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Author’s Note

The following are notes accompanying László Babai’s Spring 2014 course in Honors Com-
binatorics at the University of Chicago. I transcribed Prof. Babai’s lectures as he spoke
(i.e. typeset in real time). It is occasionally difficult to keep up with Prof. Babai’s pace, so
there are some significant omissions in these notes. I have placed comments in parentheses
to indicate where I think there are errors (it is likely there are quite many) or omissions.

If you have any improvements to suggest, please e-mail me at contact@johnloeber.com

and I will make corrections. Contributions are very welcome: I have tried to indicate using
comments where they are most required.

I also advise reading Prof. Babai’s set of lecture notes on Discrete Mathematics. Finally,
a formal disclaimer: this set of notes has not been reviewed by Prof. Babai; accuracy or
correctness cannot be guaranteed.
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1 Week 1: Monday, March 31, 2014

SET, Hypergraphs, Clubtown (Oddtown/Eventown).

See puzzle problem sheet on Laci’s website.
Card game: SET. Study it by next class.
How many cards can be put down without a SET? What mathematical structure do the
cards form? What natural substructures are SETs? What is the number of SETs?

Formalized by the same concept, Hypergraph H = (V,E). V is a set of vertices, E is a
set of edges, where each edge is a subset of V . If n = |V |, and m = |E|, then m ≤ 2n (power
set rule).

Clubtown: clubs C1, . . . , Cm ⊆ V , where V is the set of residents, |V | = n. (Rule 0)
We have that no two clubs are identical, so m ≤ 2n.
(Rule 1) Then we have that ∀i, |Ci| is even. So m ≤ 2n−1. Do Exercise
(Rule 2) Then, ∀i 6= j, |Ci ∩ Cj| is even: then m ≥ 2b

n
2
c. How do we construct this many

clubs? Then how do we prove that more clubs are not possible? Do Exercise: prove that
m ≥ 2b

n
2
c.

Then we have the much more difficult “Eventown Theorem”: m ≤ 2b
n
2
c.

We make the distinction between maximal and maximum. Maximal club system: a system
of clubs such that we cannot add more clubs. The maximum club system is the system of
clubs that has the greatest possible number of clubs.

Challenge problem: for eventown, the maximum number is equal to the maximal number.

Now we change rule 1: we write that ∀i, |Ci| is odd. (Now we are considering “Oddtown”.)
Then by rule 1 and 2, rule 0 is obsolete. Every person can have their own club, so m ≥ n.
Then it is also impossible to construct a larger club. So how do we prove m = n? Note that
if n is even, then the other solution is clubs of “all but one”.

Challenge Problem: The number of possible club systems with n clubs in oddtown is
2n

2
.

Oddtown Theorem: maximum number of clubs in Oddtown is n, i.e. WTS m ≤ n. However,
in Oddtown, maximal 6= maximum! If n is odd, we can have one club of all n members of
the town. If n is even, we can make two clubs of odd membership by splitting n into 2 clubs
of odd size each.

Important application of maximum and maximal: if we look at linearly independent sets
in linear algebra, then a maximal set is the same as the maximum set. Do Exercise

First miracle of linear algebra: if {−→v1 , . . . ,
−→vk} are linearly independent and all belong to

span{−→w1, . . . ,
−→wl}, then k ≤ l. (Exchange Lemma.)
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We will approach the oddtown theorem by way of vectors. (Do Exercise) Look at the
incidence vector VA of a set A ⊆ V , where V is the “universe”. If V = {1, . . . , n}, then the
incidence vector VA = (α1, . . . , αn) such that αi is 1 if i ∈ A, and is 0 if i /∈ A. So now we
look for some properties of vectors to immediately imply the oddtown theorem.

Lemma: under oddtown rules, −→v1 , . . . ,
−→vm are linearly independent.
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2 Week 1: Wednesday, April 2

Asymptotic Equality, Stirling’s Formula, Prime Number Theorem, Extremal Combinatorics,
Generator Functions, Binomial Formula, LYM(B) Inequality.

Take sequences an, bn. They’re asymptotically equal (“an ∼ bn”) iff limn→∞
an
bn

= 1.

Stirling’s Formula: n! ∼ (n
e
)n
√

2πn.

Prime Number Theorem
π(x) = number of primes ≤ x
π(x) ∼ x

lnx
The number e is encoded in the prime numbers!

Asymptotic equalities take an unwieldy function and approximate them with a more work-
able function.

Do Exercise: Show that
(

2n
n

)
∼ a ·nb · cn, where a, b, c constants. Find a, b, c. Use Stirling’s

Formula.

Notation: [n] = {1, 2, . . . , n}.

Suppose we have subsets Ai ⊆ [n], s.t. Ai are pairwise not comparable: (∀i 6= j)(Ai * Aj).
So what is the maximum number m of subsets? This area is called extremal combinatorics.

A sufficient condition for Ai 6= Aj is that they’re of the same size. Then m ≥
(
n
k

)
∀k.

Then what is max
0≤k≤n

(
n
k

)
=
(
n
n
b2c

)
=
(
n
dne
2

)
? (This relates to Sperner’s Theorem? Notes here are

incomplete.)

Do Exercise show
(
n
k

)
≤
(
n
k+1

)
for k < n

2
and it reverses for k > n

2
. (Symmetry of bi-

nomial coefficients: intuitively, see Pascal’s Triangle.)

The above property is called unimodality. A sequence a0, . . . , at is unimodal if:

a0 ≤ a1 ≤ . . . ≤ al ≥ al+1 ≥ . . . ≥ at

Then a sequence at > 0 is log-concave if ∀i, a2
i ≥ ai−1 · ai+1.

Do Show that if a sequence is log-concave, then it is unimodal. But if it is unimodal,
then it is not necessarily log-concave. Hence being log-concave is a stronger property.

Do prove that
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, the nth row of Pascal’s Triangle, is log-concave.
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Generator function of a sequence (finite or infinite) a0, a1, a2, . . .:

f(x) =
∞∑
i=0

aix
i

E.g. 1 = (1, 1, 1, 1, . . .) and f1(x) =
∑∞

i=0 x
i = 1

1−x . an = 1
n!

Or take an = 1
n!

, where the generating function is ex. (This portion was not entirely clear to
me; I feel as if some details are missing.)

Do-Exercise find a closed-form expression for the general form of the fibonacci numbers
f(x) = F0 + F1x+ F2x

2 + . . . = p(x)
q(x)

where p, q polynomials. Find roots of q(x).

N = {0, 1, 2, . . .}. Notation: ∪̇ is the disjoint union, i.e. union of disjoint sets. Suppose
N = A1∪̇ . . . ∪̇Ak, and Ai are arithmetic progressions, and k ≥ 2. One possibility is A0∪̇A1,
where A0 and A1 are the even and odd numbers, respectively. For another example, take
Ai = {r|r ≡ i mod m}.

Fact: 0|0 since ∃c ∈ N s.t. 0c = 0, where any n ∈ N is admissible as c.

Do Exercise ∀k, find A1, . . . , Ak with k− 1 distinct increments such that A1∪̇ . . . ∪̇Ak = N.

Challenge Problem Prove for k ≥ 2, it is impossible to have all increments distinct.
Hint is the context in which this problem was stated.

Challenge Problem if f(x) = a0 + a1x + . . . + anx
n is the generating function of the

sequence a0, . . . , an and all roots of f are negative reals, then (ai)
n
i=0 is log-concave.

Example: take
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
m

)
. They have a generating function:

(
n
0

)
+
(
n
1

)
x +

(
n
2

)
x2 +

. . . +
(
n
n

)
xn = (1 + x)n. The roots of this polynomial are n × −1. Binomial Theorem.

Do-Exercise.

Back to Sperner’s Theorem: if A1, . . . , Am ⊆ [n], pairwise not comparable, then m ≤
(
n
n
b2c

)
.

In this context, F = {A1, . . . , Am} is called a Sperner Family, and
∑m

i=1
1

( n
|Ai|)
≤ 1. That’s

called the LYM(B) inequality, after its authors: Bollobas - Lubell - Yamamoto - Meshalkin:
though in reality Bollobas proved this before the other three.

Do: Show LYM(B)⇒ Sperner’s Theorem. (One-liner.)
Proof of LYM(B). Arrange [n] in a random order: (a1, . . . , an). There are n! ways to do
this. We do it with uniform probability. Then we let X be the number of prefixes (first few
of (a1, . . . , an)) that belong to F . And we note that X ≤ 1. and then compute E(X). The
Do exercise fills out the details.
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3 Week 1: Friday, April 4

Discrete Probability, Finite Probability Spaces, Events, Random Variables, Fisher’s Inequal-
ity, Graph Terminology.

Quick review of finite probability spaces:
Ω 6= ∅ “sample space”: set of possible outcomes of an experiment. These outcomes, or
elements of the sample space, are called elementary events.

e.g. flipping n coins: |Ω| = 2n.
e.g. picking a poker hand: |Ω| =

(
52
5

)
Probability distribution: P : Ω → R, in such a way that (∀a ∈ Ω)(P (a) ≥ 0), and∑

a∈Ω P (a) = 1.

An event is some subset of the sample space: e.g. A ⊆ Ω. And the probability of some
event A is just P (A) =

∑
a∈A P (a). Then A = Ω \ A, and P (A) = 1− P (A).

Do Exercise: Modular equation: P (A ∪B) + P (A ∩B) = P (A) + P (B).

Finally, P (∅) = 0, obviously, and P (Ω) = 1. And P is uniform if (∀a ∈ Ω)(P (a) = 1
|Ω| . In

this case, P (A) = |A|
|Ω| . “Naive Probability”.

Random Variable: X : Ω→ R.
N = |Ω|: N data. (I’m unsure of what this meant.)
Expected Value or Mean Value: E(X) =

(∑
a∈ΩX(a) · P (a)

)
. Weighted average of values

of the random variable. The weights are the elementary probabilities.

Do minX ≤ E(X) ≤ maxX
Do E(X) =

∑
y∈R y · P (X = y) where X = y : {a ∈ Ω | X(a) = y}.

Let’s look at n coin flips, biased: P (heads) = p, P (tails) = 1 − p. X = # heads. Then
P (X = k) =

(
n
k

)
pk(1− p)n−k

Then E(X) =
∑n

k=0 k
(
n
k

)
pk(1− p)n−k. We also note that (recalling Pascal’s Identities)

k

(
n

k

)
= n ·

(
n− 1

k − 1

)
Then E(X) = n

∑n
k=1

(
n−1
k−1

)
pk(1− p)n−k.

Then we let l = k − 1. Then E(X) = np
∑n−1

l=0

(
n−1
l

)
pl(1− p)n−1−l.

That is simply the binomial expansion of np(p+ (1− p))n−1 = np. This should not come as
a surprise.

We discuss the indicator variable of A:

θA(a) =

{
1 if a ∈ A
0 if a /∈ A
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Which works much like a characteristic function. So:

E(θA) = 1 · P (θA = 1) + 0 · P (θA = 0)

= θA = 1

= P (A)

Which shows us an important distinction:
Events have probabilities
Random Variables have expected value
Not the other way around, ever.

Now back to coinflips: Let

xi =

{
1 if heads

0 otherwise

Then X =
∑n

i=1 xi, and E(x) =
∑
E(Xi) =

∑
p(xi = 1) =

∑
p = np, as expected.

We mentioned linearity of expectation. E(
∑
cixi) =

∑
ciE(xi), where xis are random

variables. Proving this is quite straight-forward.

Do Prove the union bound: events A1, . . . , Ak ⊆ Ω, P (∪Ai) ≤
∑
p(Ai)

HW Check online lecture notes for discrete math. Read up on finite probability spaces.

HW Monday Consider a club with 2000 members. Everybody gets a membership number,
and a card. They shuffle the cards and give everyone a card. Member is lucky if the card
number is equal to their year of birth. What is E(# of lucky members) = ? Note: club
serves vodka to all club members legally, so ∀ members, age ≥ 21.

HW Fisher’s Inequality: suppose we have a set system A1, . . . , Am ⊆ [n]; ∀i 6= j, |Ai∩Aj| =
t. ∀i, |Ai| > t. WTS m ≤ n. Note that t ≥ 1, and t is a constant. We want to prove this
with incidence vector. Show the incidence vectors of the clubs are linearly independent, over
the reals. Useful observation: take the dot product of v, w ∈ F n, where F is a field. Take
two sets. Dot product of their incidence vectors are the elements of their intersection.

A graph is a 2-uniform hypergraph, i.e. every edge has two elements. |V | = n, |E| = m, so

clearly m ≤
(
n
2

)
. The number of graphs on a given set of n vertices is 2(n2). The number of

graphs on n vertices with m edges is:
((n2)
m

)
.

Kn is the complete graph on n vertices. It has all possible
(
n
2

)
edges.

The complement of G = (V,E) is G = (V,E), where E is all the possible edges not in
E, simply the complement of E. So |E|+ |E| =

(
n
2

)
.

The empty graph is the complement of the complete graph. It has n vertices and 0 edges.
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A cycle of length n is denoted Cn.

A Path of length n − 1 is denoted Pn. We note that the subscripts denote how many
vertices a given path/cycle has.

Subgraph: H = (W,F ). Then H ⊆ G iff W ⊆ V and F ⊆ E.

Note: C3 = K3, the triangle. Do: find the max # of edges if K3 * G, i.e. G is a
triangle-free graph. (Confused; see course homepage for clearer problem statement)
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4 Week 2: Monday, April 7

Probability Spaces, Independence, Markov & Chebyshev.

A probability space has two components: (Ω, P ) where P is the probability distribution. We
have events A,B ⊆ Ω. Then we say that they are independent if P (A ∩ B) = P (A)P (B).
Trivial events: ∅,Ω. They are independent of everything.

We say that events are positively correlated if P (A∩B) > P (A)P (B) and negatively corre-
lated if P (A∩B) < P (A)P (B). If we have more than 2 events, we have to be a little careful
with our definition of independence:

Events A1, . . . , Ak ⊆ Ω are mutually or fully independent if:

(∀I ⊆ [k])(P (∩i∈IAi) =
∏
i∈I

P (Ai))

Note that this makes 2k conditions. Also note that this is different from pairwise indepen-
dence. See Wikipedia.

Random variables X, Y : Ω→ R. We say that X, Y are independent if:

(∀x, y ∈ R)(P (X = x ∧ Y = y) = P (X = x)P (Y = y))

By extension, we say that X1, . . . , Xk are independent if

(∀x1, . . . , xk ∈ R)(P (X1 = x1 ∧ . . . ∧Xk = xk)) =
k∏
i=1

P (Xi = xi)

Do If X1, . . . , Xk are independent RVs then ∀I ⊆ [k], {xi : i ∈ I} independent.

Do events A1, . . . , Ak ⊆ Ω are independent iff their indicator variables are independent.

HW For Wednesday:
(a) Construct a prob. space (Ω, P ) and events A,B,C that are pairwise but not fully (defn
above) independent.
(b) Same thing with k events: A1, . . . , Ak. s.t. they are (k − 1) wise independent, but nt
fully independent. added condition: ∀i, P (Ai) = 1

2
. hint: solutions should be simple; make

the sample space as small as possible.

Do If there exist nontrivial independent events A1, . . . , Ak ⊆ Ω, then |Ω| ≥ 2k.

Challenge Problem
(a) If n = 2k − 1, then construct n pairwise independent events of probability 1

2
each over

|Ω| = n+ 1.
(b) If n = 2k, then construct n three-wise independent events also of probability 1

2
each over
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|Ω| = 2n.

CH If X1, . . . , Xk are non-constant (trivial?)1 random variables that are t-wise indepen-
dent, then it follows that |Ω| ≥

(
k
b t
2
c

)
.

So, full independence is an extremely restrictive and extremely powerful distinction. The
power is shown by the following exercise:

DO If X1, . . . , Xk are independent RVs then E(
∏
Xi) =

∏
E(Xi).

For 2 random variables, we again have a definition of correlation: Take E(XY ) andE(X)E(Y ).
If >, then we call them positively correlated. If =, then uncorrelated. If <, then negatively
correlated.

For two random variables: if they are independent, then they are uncorrelated. If they
are uncorrelated, then they are not necessarily independent. (We may say that indepen-
dence is a stronger condition than being uncorrelated.)
HW Construct two RVs that are uncorrelated but not independent. Again, make the sample
space as small as possible.

Useful inequality: Markov’s inequality. Suppose X ≥ 0, RV. Then

(∀a > 0)(P (X ≥ a) ≤ E(X)

a
)

DO: one line proof of Markov’s inequality

Variance of a Random Variable X. V ar(X) = E((X − E(X))2) = E(X2) − E(X)2. Note
that V ar(x) = Covar(x, x). Conventionally, we write covariance between two random vari-
ables as Covar(X, Y ) = E(XY )− E(X)E(Y ).

Chebyshev’s Inequality
If X is a RV and b > 0, then P (|X − E(X)| ≥ b) ≤ V ar(x)

b2
.

Proof let Z = (X − E(X))2 ≥ 0. By Markov’s Inequality, the above is the exact same

as P (Z ≥ b2). Then by Markov, P (Z ≥ b2) ≤ E(Z)
b2

= V ar(x)
b2

.

DO We know that V ar(X) = E((X − E(X))2). Prove V ar(X) = E(X2)− E(X)2. Corol-
lary of this is that E(X2) ≥ E(X)2. This is true for all RVs, and is a consequence of the
Cauchy-Schwarz inequality. DO Prove that this is equivalent to |−→x · −→y | ≤ ||−→x || · ||−→y ||.
Where −→x · −→y =

∑
xiyi and ||−→x || =

√
x · x.

In particular, Cov(X,X) = V ar(X). Now here’s something interesting: Let X1, . . . , Xk

be RVs, with y =
∑k

i=1Xi. Then DO prove: V ar(y) =
∑

i

∑
j Cov(Xi, Xj), where the

1Event is trivial if P (A) = 0 or 1

12



diagonals (i = j) are the variances.

Corollary: if X1, . . . , Xk are pairwise independent RVs, then V ar(
∑
Xi) =

∑
V ar(Xi).

Notes: Cov(X, Y ) = 0 iff X and Y are uncorrelated. In particular, if they are indepen-
dent, then Cov(X, Y ) = 0. This gives rise to more powerful conditions... (Like what? Notes
are incomplete here; I couldn’t keep up.)

Illustration of the power and the weakness of Chebyshev’s Inequality: let’s say we have
n coin flips with probabilities p, 1 − p. This kind of coin flip is a Bernoulli trial (possibly
biased coin, independent, 2 outcomes). Let X be the number of heads. We already know
E(X) = np. Then question is what is the variance. Let the indicator variable be

Yi =

{
1 if ith coin heads

0 tails

Then we have X =
∑
Yi and DO: V ar(Yi) = p(1− p).

Then V ar(X) = np(1− p).
(I could not keep up here at all, and I also couldn’t tell what the writing on the board was.
The following is incomplete and doesn’t seem quite right — particularly the writing of

∑2

seems unusual.)

⇒ P (|X − np| ≥
∑

np) ≤ V ar(x)

(
∑
np)2

=
np(1− p)∑2 n2p2

=
1− p
p
· 1∑2 ·

1

n

This is related to the weak law of large numbers. And we can reach that conclusion with
another condition. (What was it?)

13



5 Week 2: Wednesday, April 9

No notes.

I was absent today. I would be grateful if someone could submit their notes for this day.

14



6 Week 2: Friday, April 11

Random Permutations, Erdős-Rado Arrow Symbol, Erdős-Szekeres Theorem.

Random Permutations
A permutation is a bijection, π : [n]→ [n].
Pictorially, one can draw a directed graph that describes a permutation (cycles). Every
permutation can be decomposed into unique cycles.
Talk about random permutations: then |Ω| = n! (number of permutations of a set).
Notation: c(i, π) is the length of the cycle containing i.
Preliminary question: what is P (1, π) = 1? it’s the probability that 1 maps to itself, so it is
just 1

n
. And what is P (1, π) = n? There are (n−1)! such permutations. See the cycle: there

are n− 1 places 1 can go, then there are n− 2 places, etc. so the probability is (n−1)!
n!

= 1
n
.

So based on this scant evidence, we conjecture that P (c(1, π) = k) = 1
n
.

HW Prove the above: ∀k, P (c(1, π) = k) = 1
n
.

HW What is the expected number of cycles? Prove E(#cycles) ∼ lnn.
Use some variation on indicator variables.

Theorem (Baby-Ramsey): if we color the edges of K6 in red/blue, then necessarily there
exists a monochromatic triangle. (This gives rise to a fun game called the Ramsey Game,
where the 2 players have six vertices to alternately color red/blue, and whoever creates a
triangle in their own color loses.)
Proof Take a vertex. It has five outgoing edges. Then at least three are either blue or red.
WLOG assume they’re blue. Then take two of these three. the connecting edge must be
blue or red. if blue, then we’re done. else, it’s red. That’s true for all three pairs of blue
edges. Then we have a red triangle and we are done. (If it is not immediately clear, drawing
a picture helps.)

Notation (Erdős-Rado arrow symbol): n → (k, l) means that for all red/blue colorings
of Kn, it will contain either a red Kk or a blue Kl. Example: 5 6→ (3, 3).

Erdős-Szekeres Theorem:
(
k+l
k

)
→ (k + 1, l + 1)

k = l = 2,
(

2+2
2

)
= 6→ (3, 3) (Baby Version)

k = 1, l + 1→ (2, l + 1). Similarly, by symmetry, for l = 1 and k + 1.

We note that
(
k+l
k

)
is a binomial coefficient, so we can write it using pascal’s triangle, where

our boundary cases are the edges of the triangle. So we can do this by induction: assume
k, l ≥ 2. So DO: prove the Erdős-Szekeres Theorem by induction on k + l.

We use Pascal’s Identity:(
k + 1

k

)
=

(
k + (l − 1)

k

)
+

(
(k − 1) + l

k − 1

)

15



DO (a) 17→ (3, 3, 3) and (b)dk!ee → (3, 3, . . . , 3)︸ ︷︷ ︸
k times

The most interesting case is the symmetrical case, i.e. when k = l. So we investigate if(
2k
k

)
→ (k + 1, k + 1). We also note that 4k >

(
2k
k

)
, because

∑n
i=0

(
n
i

)
= 2n.

Do Prove 1 < 4k

(2k
k )
< 2k + 1, and prove that 4k

(2k
k )
∼ c
√
k and find c.

Recall that the binomial coefficients are normally distributed with standard deviation
√
n.

(Is this right? May not have noted this correctly.)

Let’s denote 4k by n, and then we can conclude n→ (1
2

log2 n,
1
2

log2 n).

Then the question is: for what k does n 6→ (k, k)? For example, n 6→ (
√
n+ 1,

√
n+ 1). We

are looking for a graph with l2 vertices with a clique of size at most l and independent set
of size at most l.

So make an l × l matrix, and let every row be a clique. Then clearly, to pick an inde-
pendent set, we pick at most only one vertex from any row. Then there are ll independent
sets of size ≤ l.

But can we reduce this any further? This question was investigated by Paul Turán. Erdős
showed that n 6→ (2 log2 n+ 1, 2 log2 n+ 1). This we will prove now. We want to show that
there exists a graph on n vertices without Kl, Kl, l = 1 + 2 log2 n. We note that Kl is the
complement of the clique, thereby it is an independent set.

We are going to look at a random graph. We use ∼ to denote adjacency. We define a
graph by (∀i, j)(P (i ∼ j) = 1

2
, where the probabilities are independent. Then take A ⊆ [n]

with |A| = t. Then G[A] is the subgraph induced on A. Then

P (G[A] is a clique) =
1

2(t2)

(? Not sure if noted correctly.)

Notation: ω(G) is the size of the maximum clique = α(G). Remember that α(A) denotes
the maximum size of the independent set. So then

P (ω(G) ≥ t) = P ((∃A ⊆ [n])(|A| = t ∧G[A] = clique))

= P (∪|A|=t“G[A] = clique”)

So take the union bound:

≤
∑
|A|=t

p(G[A] = clique) =

(
n
t

)
2(t2)

Prof. Babai lectured very quickly and I couldn’t note down the computational steps. In any

case, we prove a lemma: if
(nt)

2(
t
2)
≤ 1

2
then n 6→ (t, t).
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Proof

P (ω(G) ≥ t) <

(
n
t

)
2(t2)

P (α(G) ≥ t) <

(
n
t

)
2(t2)

P (ω ≥ t ∨ α ≥ t) < 2 ·
(
n
t

)
2(t2)
≤ 1

That means it is not impossible. So sometimes it will happen, which gives as a proof of
existence. This is an instance of proof using the probabilistic method.

We note that in constructing a random graph, we are “flipping
(
n
2

)
coins” to decide ad-

jacency, so |Ω| = 2(n2).

Every outcome is a graph.So it follows that (∃G)(ω < t ∧ α < t). And that exactly is

the statement that n 6→ (t, t). And then we have to estimate the quotient
(nt)

2(
t
2)

to show the

values for this case...? (Again, it was hard to keep up, and I’m not exactly sure what the
last bit is meant to be.)

Office Hours Thursday 4:30 in Ryerson 162.
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7 Week 3: Monday, April 14

Probabilistic Method, Continuation of Friday’s Lecture.

Erdős-DeBruijn

Challenge: an infinite graph is k-colorable iff every finite subgraph is k-colorable. 3 proofs:

• use Zorn’s Lemma

• Goedel’s Completeness Theorem of First-Order logic

• Tikhonof’s Compactness Theorem

Discussion about the last homework: π : [n] → [n], where c(i, π) = length of the π-cycle
through i. (Notes on this part have been omitted.)

Last time: we started a discussion of Erdős’ Theorem: n 6→ (1 + 2 log2 n, 1 + 2 log2 n).

Lemma: if
(nt)

2(
t
2)
≤ 1

2
then n 6→ (t, t).

Probabilistic Method: proof of existence by showing probability of the desired case oc-
curring is > 0. We don’t need an explicit construction.

We want to use this inequality: DO
(
n
t

)
≤ nt

t!

WTS
2
(
n
t

)
2(t2)

≤ 1

then
2
(
n
t

)
2(t2)

≤ 2

t!
· nt

2
t(t−1)

2

=
2

t!
·
(

n

2
t−1
2

)t
So if n ≤ 2

t−1
2 then (box-like symbol. unclear) ? ≤ 2

t!
< 1 → 0 which is equivalent to if

log2 n ≤ t−1
2

then 1 + 2 log2 n ≤ t. QED. (I will fill in the details later.)

So, almost all graphs have no clique or independent set of size ≥ 1 + log2 n.

But this is very hard to construct explicitly. (Why?) We do n =
(
k
3

)
6→ (k + 1, k + 1)

explicitly. Construction by ZS. NAGI, college classmate of Babai.

Notation: if S is a set, and k ≥ 0, then
(
S
k

)
is a set of k subsets of S. So |

(
S
k

)
| =

(|S|
k

)
Let V =

(
[k]
3

)
: all triples of [k]. Let A,B ⊆ V , where |A| = |B| = 3. We write that

A ∼ B (A is adjacent to B) if |A ∩B| = 1.

HW: Prove that this graph has no clique and no independence set of size k + 1.
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DO Show that k is asymptotically equal to 3
√

6n (from above: n =
(
k
3

)
).

DO find G s.t. α(G) · χ(G) ≥ cn2 where c is a constant > 0.
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8 Week 3: Wednesday, April 16

Mantel-Turán Theorem, Girth.

Discussion of last quiz. Product of n dice, independent: (7
2
)n.

Mantel-Turán Theorem: If G 6⊃ K3 then m ≤ n2

4

1st Proof. Induction on n. Base case: n ≤ 2; it is clear that this holds. Inductive step:
(some intermediate steps of the proof were lost, making the conclusion unclear.) let f(n) be

this max. Remove two adjacent vertices: f(n) ≤ f(n− 2) + (n− 1) ≤ (n−2)2

4
+ (n− 1).

2nd Proof. If x ∼ y (adjacent) then deg(x) + deg(y) ≤ n : m inequalities.
Then

∑
x∼y deg(x) + deg(y) ≤ nm, and

∑
x∈V (deg(x))2 ≤ nm.

Then by Cauchy Schwartz: 1
n
(2m)2 = 1

n
(
∑

x∈V deg(x))2 ≤
∑

x∈V (deg(x))2 ≤ nm,
Because

∑
x∈V deg(x) = 2m.

So then 4m2

n
≤ nm, implying m ≤ n2

4
and we are done.

DO Generalize this: let t ≥ 3, and G = (V,E) where |V | = n, |E| = m. Assume G 6⊃ Kt.
Then prove that m is less than or equal to the number of edges of the complete (t−1)-partite
graph with nearly equal parts, i.e. that the sizes of every pair of parts differ by at most 1.

Turán’s Theorem:

The complete (t− 1)-partite graph is the extremal graph under the condition that G 6⊃ Kt.

HW: Monday if G 6⊃ C4 then m ≤ cn3/2. There exists c > 0. Estimate c for large n.
(“Kőváry-Turán-Sós”).

Challenge: prove there exists c′ > 0 such that for every n > 1, there exist graphs not
containing C4 such that m ≥ c′n3/2.

DO If T is a tree, then the number of edges of T is exactly n− 1.

Theorem: (Erdős) (∀k, g)(∃G = (V,E) s.t. girth(G) ≥ g and χ(G) ≥ k).

Definition of girth: length of the shortest cycle.

Chromatic number of a tree: obviously 2. Girth of a tree: infinite.

Probabilistic Method: Erdős-Ranyi random graph model:

Gn,p, 0 ≤ p ≤ 1

(∀i, j)(P (i ∼ j) = p)
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Then E(m) = p
(
n
2

)
.

We create a density parameter p = nζ

n
. ζ > 0. E(deg(x)) = (n− 1)p ∼ nζ .

We know α · χ ≥ n
α

. So if α small, then χ large. We find a lower bound on chromatic
number by finding an upper bound on the independence number.

P(given set of t vertices is independent) = (1− p)(
t
2)

P(there exists a set of t vertices that is independent) ≤
(
n
t

)
(1− p)(

t
2) < 1 for some t ≥ n

k
.

So
(
n
t

)
≤ nt

t!
(1− p)(

t
2) = 1

t!
(n(1− p) t−1

2 )t and we need: n(1− p) t−1
2 ≤ 1.

Excellent identity: DO ∀x ∈ R, 1 + x ≤ ex.

So n(1− p) t−1
2 ≤ n · e

−p(t−1)
2 ≤ 1, and lnn− p(t−1)

2
≤ 0, so p(t−1)

2
≥ lnn.

p ≥ 2 lnn
t−1
∼ 2k lnn

n
, so let nζ > 2k lnn.

Now what about short cycles? Denote the number of triangles (K3) with #4.

E(#4) = p3
(
n
3

)
< (pn)3. We don’t want to remove more than half the vertices, so we

want (pn)3 < n
2
. So we need p3 < n−2

2
, so p < n1/3

2n
. So we can do the same thing not with

triangles, but with cycles up to length g. Then we just need (pn)g < n
2
. Then 1

g
will make a

good ζ. But we choose ζ such that 0 < ζ < 1
g
. With such ζ, the expected number of cycles

of length ≤ g is less than n
20

. Because of Markov’s inequality, the probability that we get
more than n

10
cycles is ≤ 1

2
.

And P (α ≥ n
k
) is small — call it 0.1 — it goes to zero.

Then altogether, they have combined probability < 0.51. But the we remove at most
n
10

points from short cycles, and the graph is still mostly intact. So α < n
3k

. Then
χ ≥ 0.9n

n
3k

= 30.9k > k. (Something like that — the details of the end of this proof are

not clear to me. It was not easy keeping up, so the above sketch of proof probably needs
some careful checking.)
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9 Week 3: Friday, April 18

Hypergraphs, Graph Isomorphisms, Automorphisms, Vertex-Transitivity, Permutations &
Transpositions.

H1 = (V1, E1), H2 = (V2, E2) Hypergraphs. Isomorphism φ : V1 → V2 bijection such that
(∀E ⊆ V1)(E ∈ E1 ⇔ φ(E) ∈ E2).

Def H1 ' H2 if ∃φ : H1 → H2 isomorphism.

Theorem: if G1 6' G2 then ∃ proof of length < C
√
n logn of this. (What do we mean by

a proof of this length? Ref. concepts from computability/complexity theory.)

Automorphism of H : H → H isomorphism, a permutation of V . Then Aut(H) is the
automorphism group.

SV : the group of all permutations of V , the symmetric group on V . |SV | = n!.

Aut(H) 6 SV where we denote subgroup with 6. We note that Aut(H) has to be closed
under composition.

Def. G 6 SV is a transitive group if (∀x, y ∈ V )(∃φ ∈ G)(φ(x) = y).

Def. H is vertex-transitive if Aut(H) is a transitive group: “all vertices are alike”. Ex-
amples: triangular directed graph. Example of a non-v-t graph: path on 3 vertices.

HW Find smallest regular graph that is not vertex-transitive: fewest vertices, and then
fewest edges.

Large graphs have few automorphisms: almost all graphs have just one automorphism (the
identity automorphism). We note that “almost all” in this context means that as we let the
number of graphs we consider tend to infinity, number of graphs satisfying the property

number of graphs we consider
→ 0. This can

also be phrased probabilistically.

Challenge: (1) Almost all graphs have |Aut(G)| = 1. Prove. Stronger Version:
(2) E(Aut(G)) = 1to(1), where (1)→ 0, i.e. it is = 1 + ε∀ε > 0.

(3) Derive from (2) that gn ∼ 2(
n
2)
n!

DO # non-isomorphic graphs on n vertices, gn, is 2(
n
2)
n!

< gn < 2(n2)

DO log2 gn ∼ ln
(
n
2

)
∼ n2

2

DO number of isomorphic copies of a graph G on V is n!
|Aut(G)| .

Let Repn be the set of representatives of isomorphism classes of graphs with n vertices.
So |Repn| = gn.
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DO Then ∑
G∈Repn

n!

|Aut(G)|
= 2(n2)

I.e. ∑
G∈Repn

1

|Aut(G)|
=

2(n2)

n!

DO If G is a vertex-transitive graph (true also for hypergraphs) then α(G) · χ(G) ≤
n · (1+ lnn). Observation made by Mario Szegedy, student of L. Babai, here, some time ago.

If we have a vertex-transitive graph, it tends to have a hamiltonian cycle (cycle that goes
through every vertex, i.e. cycle of length n). So take a connected vertex-transitive graph.
Does that have a hamiltonian cycle?

Babai on Hamilton: “He went around, entertaining people at social functions: “here’s the
dodecahedron, find a Hamiltonian cycle.” So they named this thing after him. Far more
significantly, he established the quaternions.” (Celebrated his finding of the quaternions
with an act of vandalism: went out and carved ij = k,ji = −k into a wooden bridge.)

Discussion of Petersen’s Graph, one of the most remarkable graphs. (Responsible for “70%”
of counterexamples in graph theory.) It has too many important characteristics to list here,
so I suggest looking it up on the internet, e.g. here.

DO Show Petersen’s Graph is vertex-transitive.
DO+ Aut(Pet) = 128. It has 120 automorphisms. Note that the automorphism group is
isomorphic to S5.

DO+ The automorphism group of the dodecahedron has size 120. The group of orientation-
preserving automorphisms is isomorphic to A5, i.e. has size 60.

DO Every permutation can be written as the transposition of two elements. (A trans-
position is a permutation that just swaps two points, i.e. holds the other points fixed.) i.e.
transpositions generate the symmetric group.

In fact, just the neighbor-transpositions (swapping two neighbors) will generate the sym-
metric group.

DO Show that identity 6= an odd number of transpositions.

Definitions: Even and odd permutations. Even: the permutation is a product of an even
number of transpositions. Odd: product of an odd number of transpositions.

DO Sam Lloyd’s 15 puzzle: prove that it works for exactly 1
2

of starting positions. (use
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even and odd permutations).

CH Fn: fixed-point free permutations of n elements. Decide whether

|Fn ∩ An|︸ ︷︷ ︸
Even fixed-point free Permutation

is greater than, equal to, or less than

|Fn \ An|︸ ︷︷ ︸
Odd Fixed-Pt Free Perms

Hint Compute the difference.

NEXT TEST: Wednesday.

We define one more concept: a tournament is an oriented complete graph. Every edge

is directed in exactly one direction. So there are 2(n2) tournaments on n vertices. DO Prove
all tournaments have a hamiltonian path.

DO If strongly connected, then ∃ H-cycle.
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10 Week 4: Monday, April 21

Diameter of a Graph, Notes Incomplete.

distance in a graph: length of the shortest path
diameter of a graph: maximum distance(x,y) between any two vertices

d-dimensional cube has 2d vertices. as a graph, it is regular of degree d. number of edges:
d · 2d−1. We call the d-dimensional cube Qd. diam(Qd) = d. diameter of a disconnected
graph: infinite.

diameter of a random graph is a random variable. (See diameter as a function, and note
that a given random graph is an outcome in our sample space).

theorem: almost all graphs have diameter 2. (we don’t assume that they’re necessarily
connected): almost all are connected. (However, the expected diameter nonetheless is infi-
nite.)

lim
n→∞

pn = 1

where Pn = P(random graph on n vertices has diam = 2)

we’ll prove this by splitting it into lots of cases and then using the union bound

diam(G) = 1 iff G is complete, probablity of that is 1

2(
n
2)

we show by negation: WTS: P(diam(G)≥ 3)→ 0. we show something stronger: ∀x, y∃z s.t. x ∼
z, y ∼ z.

(I could not take notes for the rest of class. I’d be grateful if someone could fill this in.)
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11 Week 4: Wednesday, April 23

Steiner Triple Systems, Fano Plane, Affine Lines.

Steiner triple system (STS): 3-uniform hypergraph s.t. (∀x, y ∈ V )(∃ unique edge E) such
that x, y ∈ E.

Famous example: “Fano Plane”.
DO |Aut(Fano)| = 168. Second smallest nonabelian simple group. (Simple group: no
nontrivial subgroup.) Smallest: A5, where |A5| = 60. Geometric figure associated: dodeca-
hedron.

Observation:
number of points of an STS is necessarily odd.

DOif a STS of n points exists then n ≡ 1 or 3 mod 6. Theorem: this is iff, not just
if.

DO+ Find an STS with 13 points.

Generalize such cubes to d dimensions: so n = 3d. Take F3 = {0, 1, 2 mod 3}. Over
F3 we look at the d-dimensional vector space: Fd3 = {(x1, . . . , xd) | xi ∈ F3}. So take the
affine lines (all the one-dimensional subspaces of R, that go through the origin, shifted).

So a line through a with directional vector v: l(a, v) = {a + tv | t ∈ F3}. Where a, v
vectors. DO affine lines in Fd3 is a STS. So now we have infinitely many examples. (“Linear
algebra is the n-dimensional version of geometry.”)

DO: These STSes have (doubly) transitive group of automorphisms.

Back to the game SET: SET is a STS with 81 points. Such a STS is just F4
3 with its

affine lines as edges.

In SET, we are given a number of cards, and look for how many we can put out with-
out forming a SET. I.e. we are studying the independent set. Then we are interested in
α(A(d, 3)), where d is the dim, and 3 denotes F3. We write A(d, 3) = (Fd3, Ld), where Ld is
the set of affine lines in Fd3.

HW So prove that αk+l ≥ αk · αl.

DO:Fekete’s Lemma: If ai > 0, ak+l ≥ αk · αl then ∃L = lim a
1/k
k = sup a

1/k
k .

HW 2 < L ≤ 3. Give us the best lower bound you can. Is L = 3? Major open prob-
lem. Research is OK, just give a reference.
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12 Week 4: Friday, April 25

k-Paradoxical Tournaments, Paley Tournaments.

Question from Wednesday’s test: take an r-uniform hypergraph with m ≤ 2r−1 for r ≥ 2,
WTS that it is then 2-colorable. We want to color the vertices such that no edge is monochro-
matic. So we color each vertex red/blue at random. E = Edge. Then

P (E monochromatic) =
1

2r−1

Let X = # of monochromatic edges. Then X =
∑m

i=1 Yi where

Yi =

{
1 ith edge monochromatic

0 otherwise

Then E(X) =
∑
E(Yi) =

∑
P (Yi = 1) = m

2r−1 ≤ 1. So we are done if m < 2r−1, as then
E(X) < 1 ⇒ minX < 1 ⇒ minx = 0 i.e. ∃ outcome s.t. X = 0, where an outcome is a
coloring. Then take the case in which m = 2r−1. E(X) = 1. (Not sure how to handle this
case, lost track.) Is it possible that X ≥ 1 always? ⇒ X = 1 always. No: ∃ coloring X ≥ 2.
(? Unclear. Not sure exactly what this meant.)

Previous homework problem: k-paradoxical tournaments.

k-paradoxical tournament: (V,E) with k < n, (∀A ⊆ V )(|A| = k ⇒ (∃x ∈ V )(x → A)).
Where the notation x→ A means x beat everyone in A.

P (x→ A) =
1

2k

P (x 6→ A) = 1− 1

2k

P ((∀x)(x 6 A)) =

(
1− 1

2k

)n−k
Union Bound:

P ((∃A)(|A| = k and was not beaten)) ≤
(
n

k

)(
1− 1

2k

)n−k
Lemma if

(
n
k

) (
1− 1

2k

)n−k
< 1 then there exists a k-paradoxical tournament on n vertices.

Use: ∀x, 1+x ≤ ex and we estimate
(
n
k

)
with nk

k!
. Then we want to know if

(
n
k

) (
1− 1

2k

)n−k
<

nk

k!
· e−n−k2k <? 1. Routine algebra to reduce to nk <? e

n

2k , then k · 2k <?
n

lnn
. Then

take another log, so we have ln k + k ln 2 <? lnn − ln lnn, and we can take asymptotic
values:k ln 2 ∼ ln k+k ln 2 <? lnn− ln lnn ∼ lnn, because parts of this dominate as k →∞.
So we have k ln 2 <? lnn. But these inequalities are the wrong way, so that’s not helpful.
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So we refer to the fact that over all reals, x
lnx

is monotonically increasing, so then there
exists precisely one x such that k · 2k = x

lnx
. We take some computational steps to get to

x ∼ ln 2 · k2 · 2k. So (∀k ≥ k0(∃k-paradoxical touranment onk2 · 2k vertices).

Explicit Construction: Paley Tournament on p vertices where p ≡ −1 mod 4. The set of
vertices V (Pp) = Fp: field of order p: {0, . . . , p− 1} mod p. We say that x→ y if y − x is a
quadratic residue mod p. So take p = 7. The modulo 7 residue classes are 0,±1,±2,±3,
and that is all. Correspondingly, the quadratic residues are 1, 2, 4 and the non-residues are
0, 3, 5, 6: we don’t have to check all possible values for the non-residues. Then we draw a
diagram. Then what does it look like if we make 1 the vertex with outgoing edges? It’s the
same thing, just rotated: so it is a vertex-transitive graph.

What is the significance of p ≡ −1 mod 4? Well, p ≡ −1 mod 4 ⇒ (−1
p

) = −1, where
the division-like symbol is the Legendre Symbol.

If it was not the case that p ≡ 1 mod 4, then we would have a symmetric relation (if
y ∼ x then x ∼ y), which would be exactly what we do not want. The Legendre symbol is
multiplicative and −1 is not a quadratic residue, and this is all we need to guarantee our
edge-condition.

Now we make a deterministic (non-probabilistic) construction. We want thatA = {a1, . . . , ak} ⇒
(∃x)(∀i)((x−ai

p
) = 1) (Legendre Symbol, not division). We have a theorem: the number of

such values of x is ∼ p
2k

. In other words, our deterministic proof involves showing that the
number of such values are asymptotically equal to what we would expect if it were random.

Def: A multiplicative character of Fp is χ : Fp → C such that χ(0) = 0, χ(1) = 1, and
χ(ab) = χ(a)χ(b). (This seems particularly related to abstract algebra.)

DO if a ∈ Fxp = Fp \ {0} then χ(a) is a (p− 1)st root of unity.

Def: z ∈ C is a kth root of unity if zk = 1. in particular, if a number z is a kth root
of unity, then |z| = 1.

Def: z is a primitive kth root of unity: zk = 1 but zj 6= 1 for 1 ≤ j ≤ k, i.e. for the
smallest k. This means that every kth root of unity is also a primitive root of unity for some
other l, where l is a divisor of k.

Then we say that k is the order of z, i.e. o(z) = k.

DO o(1
z
) = o(z) and o(z1z2)|lcm(o(z1), o(z2)).

If the orders of z1 and z2 are coprime, then o(z1z2) = o(z1)o(z2).

DO+ lcm(o(z1),o(z2))
gcd(o(z1),o(z2))
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13 Week 5: Monday, April 28

Fields, Integral Domains, Linear Algebra.

Algebraic concept of a Field — look it up if unacquainted. These are the scalars in a
vector space that enable us to do linear algebra. Some infinite fields: Q,C,R. DO: show
that Q[2] = {a+ b

√
2 | a, b ∈ Q} is a field. The part that is not immediately clear is that it

satisfies the property of multiplicative inverses. Field Q[i]: Gaussian Rationals.

Finite fields: first example: Fp field of order p, where p prime. This is also known as Z
mod p,Zp,Z/pZ, or the modulo p residue classes.

Exercise: consider this field Fp[i] = {a + bi | a, b ∈ Fp}. It is a field for infinitely many
primes and is not a field also for infinitely many primes. DO For what primes is this a field?

DO If R is a finite integral domain, then R is a field. This is an interesting property:
contemplate the difference made by (in)finity.

H: the quaternions: a non-commutative field (division ring): look it up. It is 4-dimensional
over the reals. Wedderburn’s (little) Theorem: a finite division ring is a field.

Take Fp[i]. We have |Fp[i]| = p2 because for a, b we have p choices each.

We now discuss the Eulerian Rationals. Let ω3 = 1, and ω 6= 1. Then ω = −1
2

+ i
√

3
2

,
the primitive third root of unity. Then define Q[ω] = {a + bω | a, b ∈ Q}: the Eulerian
Rationals. Look them up to see their interesting properties.

We also discuss the Eulerian Integers (look them up) and make the multiplication table
for F4 : (0, 1, ω, ω + 1).

Theorem (Galois): field of order q exists iff q is a prime power, and if it exists, it is unique
up to isomorphism.

Let R be an integral domain, a ∈ R, and call na the smallest positive integer s.t. na · a = 0,
i.e. a+ . . .+ a︸ ︷︷ ︸

na

. If there is no such na, then we define na = 0.

DO na is the gcd of {k | k · a = 0, k ∈ Z}. (This is a homogeneous definition of the
notion above.)

Remark: in number theory, 0 and ∞ are frequently synonyms. This is because the ‘size’ of
a number is not given by the < relation, but rather by a hierarchy of divisibility: as 0 is a
multiple of every number, 0 sits at the top of the hierarchy.

DO If R is an integral domain then:
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(1) (∀a, b 6= 0)(na = nb)
(2) This number (the characteristic) is either 0 or prime

DO For a field F, if char(F) = p, then Fp is a subfield of F. If char(F) = 0, then Q is
a subfield of F.

If we have a field F which is a subfield of another field G, then G is a vector space over
F. If dimFG = k then |G| = |F |k.

Implication: if F is a finite field of characteristic p, then |F| = power of p.

Terminology: finite characteristic is a characteristic p, and infinite characteristic is char-
acteristic 0.

Fp[x]: the polynomial over Fp, and Fp(x): the polynomial fractions (“rational functions”)
over Fp. Recall that Q is a set of equivalence classes.

DO: Review linear algebra. We’ll be specifically interested in vector spaces over finite fields.

F is a field, Fd is a d-dimensional space over F.

Dot Product: two vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Fd. Then x · y =
∑

i=1 xiyi
Perpendicular: if x · y = 0. Denoted x ⊥ y.
Perp: x⊥ = {y | x · y = 0}
Isotropic: if x ⊥ x, x 6= 0.

Isotropic vectors: in C2 = (1, i), in F2
5 : (1, 2).

DO For what p is there an isotropic vector in F2
p?

U ⊆ F d
p is a subspace if it is closed under linear combination. And it always necessarily

contains at least 0, because the empty linear combination is 0. We denote being a subspace
by U 6 F d

p .

Let S ⊆ F d
p . Then S⊥ = ∩x∈Sx⊥.

DO Show S⊥ 6 F d
p .

HW If U 6 Fdp, then dimU + dimU⊥ = d.
DO: use this to prove Eventown.
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14 Week 5: Wednesday, April 30

Ramsey’s Theorem, Weil’s Character Sum Estimate, Legendre Symbol, Paley Tournament.

I was absent. These notes are adapted from Alex Dunlap’s.

Ramsey’s Theorem:
K

(r)
n : complete r-uniform hypergraph.

(
n
r

)
edges. Color the edges, looking for sets in which

all edges are the same color. n→ (s1, . . . , sn)(r) if for any k-coloring A1, . . . , Ak of the edges

of K
(r)
n we have (∃i)(∃B ≤ V )(

(
B
r

)
⊆ Ai). (With |B| = Si and no superscript r=2).

Theorem (Ramsey): (∀r)(∀k)(∀s1, . . . , sk)(∃n)(n→ (s1, . . . , sk)
(r)).

DO k = 2, k = 3.
Multiplicative character of Fq, where q is a prime power. χ : Fq → C. χ(0) = 0, χ(1) =
1, χ(ab) = χ(a)χ(b). χ0: the principal character.

In Fp,

χ(a) =

(
a

p

)
=


1 if a 6= 0 QR

−1 if a 6= 0not a quadratic residue

0 if a = 0

The order of χ is the smallest k so that χk = χ0 = lcm(o(χ(a))). DO ∃a s.t. o(χ) = o(χ(a)).∑
x∈Fp

(
x(x+ 10)

p

)
= 1

Andre Weil’s Character Sum Estimate∑
a∈Fq χ(f(a)). f(x): polynomial with its coefficients in Fq. Is there cancellation? If f is a

square of a polynomial, or constant times this, then we do not get cancellation. If ord(χ) = k
ten f = cgk prevents cancellation.

Theorem (Weil): If f ∈ Fq[x] and f cannot be written as cgk, deg f = d, then |
∑

a∈Fq χ(f(a))| ≤
(d− 10

√
q.

Paley Tournament: q-odd prime power, q ≡ −1 mod 4.
DO Prove that this actually defines a tournament.
a→ b if χ2(b− a) = 1.
N = (#x)(x→ A) NTS N > 0.
Claim N ≈ q/2d.

Want χ(x− a1) = . . . = χ(x− ad) = 1.

⇔ F ((χ(x− a1) + 1) . . . (χ(x− ad) + 1) =


2d if x→ A

0 if ∃i s.t. ai → x

2d−1 if x ∈ A ∧ x→ A \ {x}
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Where the 2d−1 case occurs at most once.

Want to compute
∑

x∈Fq F (x) = 2dN

F (x) =
∑

I⊂[N ]

∏
i∈I χ(x− ai0 =

∑
I⊂[n] χ(

∏
i∈I

(x− ai)︸ ︷︷ ︸
=fI(x)

)

=
∑

I⊂[n] χ(fI(x))

f∅(x) = 1. χ(f∅(x)) = 1.∑
x∈Fq χ(f∅(x)) = q, main term.
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15 Week 5: Friday, May 2

Notes currently missing — to be inserted. On Weil’s Character Sum Estimate.

Notes on paper, will be inserted soon. Update August 2, 2014: I confess these may have
been lost. Checking my files. . .
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16 Week 6: Monday, May 5

Linear Algebra, Finite Projective Planes, Incidence Geometries.

Review of homework problem: proving that dimU + dimU⊥ = d. Many solutions used
the Gram-Schmidt procedure or Orthonormal bases, which are not admissible. (Do they
work in a general field?)

x ⊥ U ⇔ x ⊥ a basis of U . So let u1, . . . , uk be a basis of U . We represent x = (x1, . . . , xd).
We use this to set up a system of homogeneous linear equations:

x1u11 + . . .+ xdu1d = 0

...
...

x1uk1 + . . .+ xdukd = 0

{x | x ·A = 0} = U⊥ 6 Fd: the set of solutions is U⊥. (Every independent constraint reduces
the number of solutions.) The rows are linearly independent, so the rank(A) is k. By the
Rank-Nullity Theorem, dimU⊥ =nullity(A) = d−rank(A). X

We now discuss Finite Projective Planes. An Incidence Geometry is a set G =
(P,L, I), where P are points, L are lines, and I is the incidence relation. This is really just
a bipartite graph G = (P +L, I). We can make the Fano Plane into such a graph: a regular
bipartite graph of degree 3. The “Levi Graph of Geometry”.

DO dual of a projective plane is a projective plane. Notably, Dual(Fano) = Fano.

Projective plane over a field F, finite or infinite. 1-dim subspaces of F3: points of a projective
plane PG = (2,F) where the 2 denotes the dimension and F denotes the field.

2-dimensional subspaces are lines. Each projective point has a triple of homogeneous co-
ordinates x = (x1, x2, x3) 6= 0. x ∼ y if (∃c)(x = cy). Thus, points form equivalence
classes.
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17 Week 6: Wednesday, May 7

Graph Theory, Finite Projective Planes, Bruck-Ryser Theorem, (Orthogonal) Latin Squares.

Review of last quiz:

Know: for almost all graphs, α(G) < 1 + 2 log2 n. Prove: for a.a. graphs, χ(G) > ω(G)100.

G↔ G, α(G) = ω(G).

Now, χ(G) ≥ n
α(G)

≥ n
1+2 log2 n

. (Second ≥: almost always). Then we want to know if

this is greater than (1 + 2 log n)100, which is almost always ≥ ω(G)100. This is the case for
sufficiently large n.

Then we had Fp[i] = {a + bi | a, b ∈ Fp}. We claim that this is a field iff
(
−1
p

)
= −1.

We prove this: ⇐. (a + bi)(a − bi) = a2 + b2 6= 0. Brief computation in complex numbers
follows. The other direction: u ∈ Fp, u2 − 1(p). (u− i)(u+ i) = u2 − i2 = −1− (−1) = 0.

For the third problem, adjacency depends solely on the difference, and any automorphism
doesn’t change the difference. That proves that it is vertex-transitive. If we want to prove
that it is edge-transitive, we realize that an automorphism is scaling by a factor that is a
quadratic residue, preserving the edge.

DO Fix x. If G is vertex-transitive and σ is a random automorphism (a uniform ran-
dom member of the group of automorphisms), then σ(x) is a random vertex.

Last problem: our famous inequality, α(G)·χ(G) ≥ n for all graphs. If G is vertex-transitive,
then α(G)χ(G) < n(1 + lnn). Proof: we take A, a maximum independent set, i.e. such
that |A| = α(G). We will pick σ1, . . . , σt from Ω = Aut(G). Then the probabilities are
uniform because of vertex-transitivity. So Pσi(x /∈ σi(A)) = P (σ−1

i (x) /∈ A) = 1 − α
n
.

So P (x /∈ ∪ti=1σi(A)) =
(
1− α

n

)t
because the σi are independent. We use the usual

trick: this is less than e−
αt
n . Then what is the probability that x is not in this union?

P ((∃x)(x /∈ (above)) ≤ m
(
1− α

n

)t
< ne

−αt
n ≤ 1.

Lemma If ne−
alphat
n ≤ 1 then χ(G) ≤ t.

Then comes the routine algebra (the combinatorics is done), so we get n ≤ eαt/n so lnn ≤ αt
n

so n lnn ≤ αt, so t ≥ n lnn
α

. So χ ≤
(
n lnn
α

)
≤ n(1+lnn)

α
.

So that was the test. Now back to finite projective planes: for what numbers do we have
planes of that order? I.e. Π = {n | ∃ finite projective plane of order n}. We have that
Π ⊇ {prime powers}. However, not all of these are Galois planes. No other number is
known to belong to Π. How many other numbers do we know that do not belong to Π? This
is a known result, the Bruck-Ryser Theorem: if n ≡ 1 or n ≡ 2 mod 4 (mod 4, of course, as
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always) and n ∈ Π then (∃a, b)(n = a2 +b2). If n is not a sum of two squares, then it is not in
Π. If it is the sum of two squares, then we don’t know. If n 6≡ 1 or 2, then we also don’t know.

We make a list of numbers:
in Π: 2, 3, 4, 5, 7, 8, 9
not in Π: 6, 10
?: for a long time, 10, and 12. All the other numbers not taken care of by Bruck-Ryser are
unknown.

Exponential Growth: nothing is sustainable. People don’t understand exponential growth.

Latin Square A square of n × n. Every row and every column contains the numbers 1
through n. Orthogonal Latin Squares: a pair of latin squares is orthogonal if when super-
imposed we get another pairwise latin square: e.g.1 3 2

3 2 1
2 1 3


and 1 3 2

2 1 3
3 2 1


give the orthogonal latin square 1, 1 3, 3 2, 2

3, 2 2, 1 1, 3
2, 3 1, 2 3, 1


Interesting Proposition: DO: Suppose A1, . . . , Ak are n× n orthogonal latin squares. Then
want to show (1)k ≤ n− 1, (2)∃k = n− 1 ⇐⇒ ∃ projective plane of order n.
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18 Week 6: Friday, May 9

Kőváry-Turán-Sós Theorem, Quadratic/Arithmetic/Geometric Mean, Jensen’s Inequality,
Matching, Konig-Hall Theorem.

Kőváry-Turán-Sós: i G 6⊃ C4, then m = O(n3/2), then there exists c > 0 such that m ≤ cn3/2.
The key observation to solving this is that no C4 means that (forallx, y) x and y have at most
1 common neighbor. Then we count (N) the paths of length 2 in 2 ways. So then N ≤

(
n
2

)
,

counting by (a, c). But if we count by b, then N =
∑

b∈V
(

deg(b)
2

)
. So

(
n
2

)
≥
∑

b∈V
(

deg(b)
2

)
.

Also note that this is trivially less than n2

2
, and note that

∑
b∈V
(

deg(b)
2

)
= 1

2

∑
i∈V (d2

i − di) =
1
2
(
∑
d2
i )− 1

2

∑
di, where di = deg(i). So then n2 > (

∑
d2
i )− 2m, i.e. n2 + 2m >

∑
d2
i .

We distinguish between the quadratic mean and the arithmetic mean. Then it’s an
easy exercise that the arithmetic mean is less than or equal to the quadratic mean. This is
a consequence of Cauchy-Schwarz. DO: Prove this directly, without reference to Cauchy-
Schwarz.

Continuing: then n2 + 2m >
∑
d2
i ≥ 1

n
(
∑
di)

2 = 1
n
(2m)2. So n3 + 2mn > 4m2. So

n3 > 4m2−2mn (Great confusion ensued in the next few minutes — apparently a blackboard
mistake was made somewhere. Calculations have been skipped, and an n-term was dropped
somewhere.) Anyway, we get (n3 + n2

4
)1/2 > 2m− n

2
, yielding that m < 1

2
(n

2
+ (n3 + n2

4
)
1
2 ) ∼

1
2
n3/2.

Another way is via Jensen’s Inequality. Take f(x) convex. If ∃f ′′ then convex⇔ f ′′(x) ≥
0 (Do.) For every lambda 0 ≤ λ ≤ 1 and x < y, then f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).

If f is continuous, then f(x+y
2

) ≤ f(x)+f(y)
2

implies the previous condition. (DO.)

Jensen’s inequality then states that if f is convex, ∀x1, . . . , xk, f(x1,...,xk
k

) ≤ f(x1)+...+f(xk)
k

.
DO.

Moreover, DO: show that Jensen’s inequality immediately gives that the arithmetic mean
is less than or equal to the quadratic mean.

More demanding, however, is the geometric mean: n
√
x1, . . . , xn for xi > 0. DO: show

that the geometric mean is less than or equal to the arithmetic mean. (Use Jensen’s Inequal-
ity.)

We have that
(
x
2

)
convex (it is not restricted to integer values). So n

2
>

∑
(di2 )
n
≥ (Jensen)(∑

di
n
2

)
=
( 2m
n
2

)
= 1

2
· 2m
n
· (2m

n
− 1)

This also ends up yielding, using some previous observations (inequalities), that m <
1
2
(n3/2 + n).

Anyway, that was an old homework. Now, the new homework was to show that this bound
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is on the right order of magnitude. So suppose n = 2(q2 + q + 1), where q is a prime power.
So we construct a bipartite levi graph from PG(2, q), with n

2
vertices in each part (one part

P, the other part L). We then know that there cannot be a C4 in this graph, as it implies two
points and two lines in this cycle. So the number of edges will be (q2 + q + 1)︸ ︷︷ ︸

n
2

(q+1) > (n
2
)3/2.

Remarks on prime numbers: they are remarkably dense. If we pick a random number
between 1 and n, the probability that it is a prime is 1

lnn
. This yields some very high proba-

bilities: even if we enumerate the number of elementary particles in the universe (about 2500)
and pick one at random, the probability that it is a prime is greater than 1

500
. Remarkable!

DO Prime Number Theorem implies pn+1 ∼ pn.

Bertrand’s Postulate: Proven by Chebyshev.

Prime Number Theorem: proven in 1896, π(x) ∼ x
lnx

. 40 years previous, Chebyshev showed
that π(x) = Θ( x

lnx
).

Anyway, let q = max{r | r prime , n ≥ 2(r2 + r + 1)}. Then pick r0 : n = 2(r2 + r + 1). (r0

is a number such that this equality holds.)

Then for p prime, r0
2
≤ p ≤ r0. (This p is q.) Then n′ ≥ 2(p2 + p+ 1) ≥ 2(

r20
4

+ r0
2

+ 1) ≥ n
4
.

Then (unsure what happened here, reference was made back to the bipartite diagram) we
get that some quantity (n = p2 + p+ 1?) ≥ (n

2
)3/2 edges ≥ (n

8
)3/2.

In fact, we can get m ≥∼ (n
2
)3/2 because of PNC.

Matching: set of independent (disjoint) edges in a graph. Let µ(G) be the matching number,
the maximum number of independent edges. Let τ(G) be the covering number, in CS also
known as the ‘hitting number’, the minimum number of vertices that hit every edge.

As a matter of fact, these are concepts for hypergraphs.

DO: τ ≥ µ. It should be obvious. The question is: are there interesting cases when
these two are equal?

(Denes) Konig’s Theorem: if G is a bipartite graph, then τ(G) = µ(G). DO+. Algo-
rithmic proof (should produce simultaneously a matching of a certain size, and a hitting set
of the same size).

A particular consequence of this is the Konig-Hall Marriage Theorem:
If we take a bipartite graph (L,R), is there a bijection from the left side into the right side
that is a matching?

Take A ⊆ L. Let NG(A) be the neighborhood of A, i.e. the set of all vertices not in
A that are adjacent to some vertex in A. Then iff @A ⊆ L s.t. |NG(A)| < |A|, i.e. iff
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∀A ⊆ L, |A| ≤ |NG(A)|, there exists a perfect L-R matching (a matching involving all ver-
tices in G).

We define a K-H obstacle: a subset of L larger than the entire set of its neighbors. So
either a K −H obstacle exists, or there is a matching. In either case, there’s a short proof
(we show a K-H obstacle, or we show a matching).

HW: use marriage theorem to prove that if G is a regular nonempty bipartite graph then
G has a perfect matching. (Think about this intuitively.)
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19 Week 7: Monday, May 12

Friendship Graph, Erdős-Rényi-Sós Theorem, Spectral Theorem, Polarities, Projective Planes,
Latin Squares & Rectangles, Baer’s Theorem.

Friendship Graph: (∀x 6= y)(∃z! x ∼ z ∼ y). Examples are graphs of triangles connected at
one central vertex.

Theorem (Erdős-Rényi-Sós): There are no other friendship graphs.

Latin Rectangles: k × n, k ≤ n.

HW: prove: every Latin Rectangle can be completed (i.e. row(s) can be added) to form a
Latin Square.

Hint: use previous Ex: non-empty regular bipartite graph has a perfect matching.

Steiner Triple System: for every n ≡ 1 or 3 modulo 6, there exists a STS. The proof of
existence for all these n is inductive. We construct smaller STSes (Fano Plane, the one on
13 vertices,etc.) and then connect them to form larger ones — by this approach, we can
exhaust all cases.

So imagine we have three STSes on n vertices, enumerate 1, 2, . . . , n. Then connect ver-
tex i from the first STS with j from the second STS, and connect that with aij in the third
STS. This implies an n× n matrix with entries 1, . . . , n — a Latin Square!

So to triple the size of a STS, we construct a Latin Square. Now, the three STSes we
use don’t have to be the same, and we can connect them in many ways, and we can have an
enormous number of STSes. (DO: Latin Square exists for every n)

We glue three STSes together by taking three copies such that they share a point/subsystem,
edge, or by connecting three disjoint copies.

The starter cases for this construction is n = 13, 9, 7, 3, 1. DO: this set of starter cases
is sufficient.

Spectral Theorem:
over R: A is an n × n symmetric matrix: A = Atr , then there exists an orthonormal
eigenbasis. Definition of terms: basis: b1, . . . , bn: basis of Rn. Orthonormal:

bi · bj = dij =

{
1 if i=j: normal

0 ifi 6= j : orthogonal

Eigenbasis: each bi in the basis is an eigenvector. A consequence of the spectral theorem is
that all the eigenvalues are real-valued: this is remarkable. Characteristic polynomial of a
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matrix.

Take A ∈ Cn×n. Let λ1, . . . , λk: eigenvalues of C. DO
∑
λi = tr(A) =

∑
aii. Review

characteristic polynomials.

Now look at a matrix associated with a hypergraph: the incidence matrix. It’s a n × m
matrix, representing vertices and edges, respectively.

M : incidence matrix of a finite projective plane of order n: (n2 + n+ 1)× (n2 + n+ 1). We
have (n+ 1) ones per row. Claim: (n+ 1) is an eigenvalue of M .

For any matrix, multiplying it by the all-ones vector gives us the row summations.

We extend the spectral theorem a bit: it’s not just if we have an orthonormal eigenba-
sis — as long as we have a set of orthonormal eigenvectors, we can extend that set to make
an orthonormal eigenbasis.

Now, can we express the conditions of a Latin Square in form of a matrix equation? Note
that if we have two sets and we give both of them their incidence vectors, we can find the size
of the intersection by taking the dot product of their incidence vectors. We have a similar
operation: M trM = (|`i ∩ `j|) gives us a matrix with n+ 1 on every cell of the diagonal, and
1 everywhere else. This is equal to MM tr.

DO: MM tr follows from M trM = . . ..

Now the question is: suppose we have the matrix given by MM tr. Suppose we have the
identity matrix (I) and the J-matrix, the all-ones matrix. Then M trM = J + nI.

The sum of every row is (n+ 1) + 1 · (n2 + n+ 1− 1) = n2 + 2n+ 1 = (n+ 1)2. (Could we
have found that previously? Yes. M trM1 = (n+ 1)M tr1 = (n+ 1)21.)

So Jbi = 0, for i ≥ 2. Then (J + nI)bi = nbi. We found the eigenvectors.

Polarities: a polarity is a one-to-one correspondence between points and lines of a pro-
jective plane that preserves incidence. p↔ ` = f(p). (So p ∈ `⇔ f(`) ∈ f(p)).

DO All Galois planes have polarities.

We say that p is a fixed point of f if p ∈ f(p). Theorem (Baer): every polarity has a
fixed point. DO. Hint: use eigenvalues of M trM .

Possibly degenerate projective planes:

1. Line with two points

2. Point on two lines
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3. triangle on three vertices (made from three lines)

What are the degenerate projective planes? We want infinitely many examples. Every de-
generate projective plane has all points but one on one line, and one point elsewhere — all
other points are connected to it by unique lines. DO: this is all.

Back to the friendship theorem. The Friendship Graph: N(x) = {y | y ∼ x} set of
neighbors of x. Claim: this is a possibly degenerate p.p. There are two cases. Either it is a
degenerate p.p., or it is not. If it is degenerate, then it is a starburst (flower) — the graph
where all triangles meet on one vertex. Now what if it is not degenerate? Then x ↔ N(x)
is a fixed-point free polarity. But by Baer’s theorem, there’s no such thing, so that rules out
the non-degenerate projective planes. So all that remains are the degenerate cases, which
give us the flower-graphs. So there are no friendship graphs other than those flower-graphs.
And we are done with the proof of the Erdős-Rényi-Sós Friendship Theorem.

42



20 Week 7: Wednesday, May 14

Hermitian Dot Product, Orthogonal & Normal Matrices, Rayleigh’s Theorem.

In Rn, we have ||x|| =
√
x · x so ||x|| = 0 iff x = 0. For the complex space, however,

that’s not sufficient. So for Cn, we define the Hermitian dot product: 〈x, y〉 =
∑n

i=1 xiyi.
In particular, 〈x, x〉 =

∑
xixi =

∑
|xi|2 ≥ 0 ∈ R.

Operator norm of A ∈ Ck×`. ||A‖ = max ||A||||x|| . We have to justify the use of max rather
than sup. DO prove the max exists.

A* = conjugate transpose. DO (AB)∗ = B∗A∗.

Def. S is a unitary matrix S ∈ Cn×n, if S∗S = Id.

DO If I have an n-by-n complex matrix S, it is unitary iff ∀x, y ∈ Cn, the hermitian
product 〈Sx, Sy〉 = 〈x, y〉.

In real space, S ∈ Rn×n is an orthogonal matrix if the same holds.

Review of Spectral Theorem.

Normal Matrix: a square matrix s.t. AA∗ = A∗A.

For A ∈ Cn×n, the following are equivalent:

1. There exists an orthonormal eigenbasis: b∗i bj = dij.

2. A is normal

3. A is unitarily diagonalizable.

For the Real spectral theorem, i.e. A ∈ Rn×n, the following are equivalent:

1. there exists an orthonormal eigenbasis

2. A = Atr

Examples of normal matrices: A if A = A∗. These are called Hermitian Matrices. Di-
rect generalization of the real symmetric matrices. The unitary matrices are also normal,
A−1 = A∗. So in particular, the real orthogonal matrices are also normal (therefore they
have an orthonormal eigenbasis over the complex numbers, but typically not over the reals).

DO if A is normal, then A is Hermitian if and only if all eigenvalues are real. It is unitary
if and only if all eigenvalues have absolute value equal to 1.

WTS that if we have a complex hermitian matrix, then the eigenvalues are real. Use the fact
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that it is symmetric. x∗Ax = x ∗ (λx) = λx∗x = λ||x||2, where ||x||2 > 0 ∈ R. That’s just
a one-by-one matrix 9 a number). So (λ||x||2)∗0 = λ||x||2 = (x∗Ax)∗ = x∗A∗x∗∗ = x∗Ax =
λ||x||2. Implies λ = λ, so λ ∈ R.

DO ♥ Compute the eigenvalues of the rotation matrix.
DO Verify geometric action. (For a standard basis.)

Rayleigh Quotient of a symmetric R (or a Hermitian C) matrix A:

RA(x) =
x∗Ax

x∗x

So RA : Cn \ {0} → R.

Eigenvalues λ1 ≥ . . . λn ∈ R.
DO maxA∈Cn\{0}RA(x) = λ1 (Rayleigh’s Theorem)
minRA(x) = λn (Apply max to −A)

DO λi = maxU6Cn,dimU=i minx∈U,x6=0 RA(x). DO: Courant-Fisher inequalities/theorem.
Interlacing Theorem. Follows from Courant-Fisher. (Statement of theorems omitted — see
course websites, likely under the exercises.)
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21 Week 7: Friday, May 16

Projective Planes, Fixed Points, Polarities, Linear Algebra, Latin Squares.

Reviewing the theorem about polarity: Baer: finite projective plane has no fixed-point-
free polarity. Recall: a polarity is a bijection from points to lines, f : P → L, such that
p ∈ `⇒ f(`) ∈ f(p). Fixed point: p ∈ f(p).

If M is the incidence matrix, where the columns are the lines and the rows are the points,
then

mij =

{
1 if pi ∈ `j
0 otherwise

Then we have p1, . . . , pN and `1, . . . , `N , where N = n2 + n + 1. Then MM tr = M trM =
J +nI, where J is the all-ones matrix, and we have n+ 1 in the diagonal, and 1 everywhere
else. (DO)

Can we infer something about n itself? The incidence matrix is not uniquely assigned.
We have (N !)2 incidence matrices. Does a matrix tell us anything about polarities? Can we
make inferences?

Suppose we have our incidence matrix M with rows p1, . . . , pN and columns f(p1), . . . , f(pN).
Then f is a polarity if and only if M is a symmetric matrix, i.e. M = M tr. Therefore it
has real eigenvalues.

(pi ∈ `j ⇔ pj = f(`j) ∈ f(pi) = `i).

MM tr = M2. Let M have eigenvalues µ1, . . . , µN . Then M2 has eigenvalues µ2
1, . . . , µ

2
N .

DO This holds for all matrices over any field.

This means that if we know the eigenvalues of the square, we almost know the eigenvalues
of the original matrix. This means that the only ambiguity is the sign. So the eigenvalues
of M are (n+ 1) (given by the all-ones vector, M · 1 = (n+ 1)1) and ±

√
n, . . . ,±

√
n.

So now what can we say about the diagonals of M? mii = 1 ⇔ pi ∈ f(pi) : pi is a
fixed point. So if f is fixed-point-free, then (∀i)(mii = 0). Then the trace of the matrix
(sum of the diagonal elements) = 0. But the trace is also equal to another important quan-
tity, the sum of the eigenvalues! So we have Tr(M) = 0 =

∑
µi. we note that we have

Tr = (n+ 1) + k
√
n for k ∈ N. We note we have n ≥ 2 because we’re on a projective plane.

Babai claims this sum cannot be 0.

We now have two cases: we have n + 1 = −k
√
n. If n is not a square: then the RHS

is irrational or 0. Done. If n = `2 is a square, Then we have `2 + 1 = −k`. We have ` ≥ 2,
and this gives rise to a contradiction.
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We could also do it just by squaring both sides: n + 1 = −k
√
n, so (n + 1)2 = k2n ≡ 0

mod n, but (n+ 1)2 ≡ 1 mod n, which gives us a contradiction. (This is faster.)

We had a related, but not-quite-identical problem on the test. M incidence matrix of pro-
jective plane of order n. M · −→1 = (n+ 1)

−→
1 . n+ 1 = λi. (Or was it λ1?) N = n2 + n+ 1.

We claim that for λ2, . . . , λN ∈ C, we have |λi| =
√
n.

Normal Matrix: commutes with its conjugate transpose. AA∗ = A∗A. M is a real
matrix, so its transpose is the same as its conjugate transpose. So M is a normal matrix.
It’s over the complex numbers, so there exists an Orthonormal Eigenbasis in Cn.

A[u1, . . . , uN︸ ︷︷ ︸
U

] = [Au1︸︷︷︸
λ1u1

, . . . , AuN︸︷︷︸
λNuN

] = UD

Where D is a diagonal matrix consisting only of the eigenvalues λ1, . . . , λN .

Then what do we know about U? U∗U = I. u∗i · u∗j = dij. AU = UD. U−1AU = D.

U∗AU = D. Then D∗D is the matrix with λ1λ1, . . . , λNλN in the diagonal and 0 everywhere
else. This is equal to the matrix with |λ1|2, . . . , |λN |2 in the diagonals and 0s everywhere else.

We have U∗A∗UU∗AU = D∗D, and (U∗AU)∗ = U∗A∗U∗∗. Then U∗A∗AU = U∗(J + nI)U .
Now, this lets us keep our eigenvalues — it just shifts the basis. So |λ1|2 = (n + 1)2, so
|λ1|2 = n. X

DO if AB = BA, A,B are diagonalizable (have an eigenbasis), then A,B have a com-
mon eigenbasis.

Now back to Latin Squares: if k < n and we have a k × n Latin Rectangle, then we
can extend it to a (k+ 1)× n Latin Rectangle. This becomes a problem of finding a perfect
matching in a bipartite graph.

Sketch: we will have a bipartite graph with 1, . . . , n in each part. We want each vertex
to have degree n − k. Then, for every column missing element j, we may place j in that
column in row k+ 1. (Permitted to extend.) We note that for every row we add, we have to
put j somewhere — so that excludes some cell in row k + 1 from being able to store j.

Now, in how many ways can we extend a Latin Rectangle? That’s the same as the number
of perfect matchings, a more difficult quantity to compute.

Let A = (aij)n×n. Then det(A) =
∑

σ∈Sn sgn(σ) ·
∏n

i=1 ai,σ(i). We’re in Sn, so there are
n! terms. Also note the definition of sgn: +1 if σ is an even permutation, −1 if σ is an odd
permutation.

Now we’re interested in the Permanent of a matrix. (This quantity is basically infeasi-
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ble to compute except for special cases.)

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

per(I) = 1

per(J) = n! (All-Ones Matrix)

We define the Stochastic Matrix: aij ≥ 0,
∑n

j=1 aij = 1. The Doubly Stochastic
Matrix:

∑n
i=1 aij = 1.

per(
1

n
J) =

n!

nn
≈ e−n

Permanent Inequality of a doubly stochastic matrix. Then per(A) ≥ n!
nn

.

DO Use this to show: if r ≥ 3 then a regular bipartite graph of degree r has exponen-
tially many perfect matchings (on n; r is fixed).
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22 Week 8: Monday, May 19

Permanents, Latin Squares, Linear Algebra, Perfect Matchings.

CHALLENGE. If σ ∈ Sn, σ 6= 1, ord(σ) = nα,⇒ (∃m)(σm 6= 1, σm fixes at least n(1− 1
α

)
points).

DO If G is an r-regular graph of girth ≥ 5, then n ≥ r2 + 1. Show that n = r2 + 1 is
possible for r = 1, 2, 3.

DO Suppose a1, . . . , an, b ∈ R, ai 6= 0. Pick a subset I ⊆ [n] at random. We want to
find P (

∑
i∈I ai = b) ≤ c√

n
. For some constant c. Estimate c. Hint: this follows from an

earlier theorem in this course.

DO Show n! ≥ (n
e
)n. Give a 1-line proof. Stirling’s formula is neither allowed nor help-

ful.

Count perfect matchings in an r-regular bipartite graph. We use the Permanent Inequality
by Falikman-Egorychev around 1980. Before that, it was called “van der Waerden’s conjec-
ture”. (See the van Lint-Wilson text.)

We say that an n × n matrix is stochastic if every entry is greater than or equal to 0,
and every row sums to 1. It is doubly stochastic if the same is true for the columns. (i.e. A
and Atr are both stochastic.)

The permanent inequality says that if A is doubly stochastic, then Per(A) ≥ n!
nn
≥ 1

en
.

Equality holds if and only if A = 1
n
J .

Bipartite graph G = (K + L,E) has an incidence matrix M = (mij).

mij =

{
1 if lefti ∼ righti
0 otherwise

(Take i ∈ K, j ∈ L).
deg(left i) =

∑
ith row

deg(right j) =
∑
jth column

If K = L = n, then the number of perfect matchings is equal to the permanent of M . 1
r
M

is doubly stochastic. (Graph is r-regular.)

per(1
r
M) ≥ n!

nn
≥ 1

en
. The number of perfect matchings, per(M) = rn ·per(1

r
M) ≥ rn

en
= ( r

e
)n,

r ≥ 3.

HW Let L(n) denote the number of n× n Latin Squares. Prove: lnL(n) ∼ n2 lnn.

CH Prove almost all Latin Squares have no non-identity automorphism. (You have to
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define the notion of an automorphism on a Latin Square.)

We’re still interested in finite projective planes of order that is not prime-power. Specif-
ically, we’re curious about the case when n ≡ 2 mod 4: two orthogonal Latin Squares exist
for all such n, except for one case: For the case of 6, Terry proved in 1906 that there are no
two orthogonal Latin Squares of order 6.

There is a construction that relates Latin Squares, Matrices, and Affine Lines/Affine Planes/Projective
Geometry. A reference will be inserted here...

(Remark: the problem with regard to 6× 6 Latin Squares was actually first raised by Euler,
who named it the 36 Officers Problem.)

Then, to do with incidence vectors: We have a set of points P in a space with dimen-
sion n2 +n+ 1. We then add another coordinate to every vector that may be 0 or 1. We call
it the parity check: n2 +n is even, so n2 +n+ 1 is odd, so n2 +n+ 2 is even again. Let v` =
incidence vector of line `, we then add the parity check to construct the vector v` ∈ Fn2+n+2

2 .
Note that this vector is of course necessarily even.

Then let U = span(−→v` | ` ∈ L) ≤ Fn2+n+2
2 .

Then DO if n ≡ 2 mod 4, then U is a totally isotropic subspace of maximum dimen-
sion = n2+n+2

2
.

In this vein, check out McWilliams’ weight enumerator identity, which connects wu with
wu⊥ : U ≤ Fnq , wu(t) =

∑
u∈U t

|u|. |u| = # nonzero in u.

If we have a graph, then we can associate with it a symmetric real matrix called the adjacency
matrix of a graph: A = (aij). This is an n× n matrix.

aij =

{
1 if i ∼ j

0 otherwise

Easy consequence: trace of the matrix is 0. Then it follows that the sum of the eigenvalues
is 0.

A = Atr: eigenvalues λ1 ≥ . . . ≥ λn.

Then it follows that A2 = (bij), and bij = # walks of length 2 from i to j.

As a special case of this statement, it is clear that bii = deg(i).

So what is At = (a
(
ijt))? Extending the above, we have a

(
ijt) = # of walks of length t

from i to j.
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Then what is the trace of A2? It is the sum of the degrees; by the handshake lemma,
that is 2m, where m = # edges. This is also equal to

∑
λ2
i .

Then the trace of A3 is 6 times the number of triangles in the graph.

Suppose I have a number of edges m. What is the maximum number of triangles? Try
to create the complete subgraph, where t =

(
n
3

)
.

DO: Prove: t ≤
√

2
3
m3/2.

DO (This lemma may come in useful): if x1, . . . , xn ∈ R, then (
∑
x2
i )

3 ≥ (
∑
x3
i )

2.

Note: the bound in the exercise is asymptotically tight: if m =
(
n
2

)
and t =

(
n
3

)
then

t ∼
√

2
3
m3/2.
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23 Week 8: May 21

Random Graphs, Chernoff Bound, Hyperbolic Functions.

Random graph G with n vertices. The expected degree of a given vertex is n−1
2

. We expect
the actual outcome to be quite close to the expected value:

P

(∣∣∣∣deg−n− 1

2

∣∣∣∣ > εn

)
→ 0

At what rate does this go to zero? This is given by Chebyshev’s inequality, which gives a
rate of decay on Oε(

1
n
). (Law of Large Numbers.)

The weakness of Chebyshev’s inequality is that it only uses pairwise independence. Us-
ing Chebyshev with the Union Bound does not give us the desired result, so we use a much
stronger concentration inequality:

Chernoff Bound. X =
∑n

i=1 Yi where Yi all independent, |Yi| ≤ 1, E(Yi) = 0. Then

P (|X| ≥ a) ≤ 2e
−a2
2n .

DO prove: with exponential probability, all vertices have degree close to n−1
2

. (Quantify
these statements: what is exponential? What is close?)

Proof. Special case: Yi = ±1 ∴ P (Yi = 1) = 1
2
.

We know P (X ≥ a) = P (etx ≥ eta), which is true ∀t > 0. By Markov’s inequality,

P (X ≥ a) ≤ E(etx)
eta

.

So E(etx) = E(e
∑
tYi) = E(

∏
etYi) =

∏
E(etYi) ≤ (cosh t)n ≤ e

nt2

2 . The third equality
is where we use full independence.

E(etYi =
et + e−t

2
= cosh(t) ≤ et

2/2

DO Show that cosh(t) ≤ et
2/2.

(∀t)(P (X ≥ a) ≤ e
nt2

2

eta

Find the t to minimize the above expression. Easy, because we have t(nt
2
− a), so the zeroes

are at t = 0 and t = 2a
n

.

Proof. General case: we still claim E(etY ≤ cosh t. We take Y = Yi. Assumptions:
|Y | ≤ 1, E(Y ) = 0. If under these assumptions we prove our claim, then we are done.

Let ht(x) = cosh(t) + x sinh(t). Then (∀x)(−1 ≤ x ≤ 1⇒ ht(x) ≥ etx).
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ety ≤ ht(Y ). E(ety) ≤ E(ht(Y )) = E(cosh t+ Y sinh t) = cosh t+ sinh t · E(Y ) = cosh t.

The last 15 minutes were spent on the sixth quiz.
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24 Week 8: Friday, May 23

Graphs, Linear Algebra.

Review of Wednesday’s Test Problems.

First question: if A is doubly stochastic, then per(A) ≤ 1. A stochastic matrix: every
entry ≥ 0, and every row sum = 1. Doubly stochastic if A = Atr as well. Then derive the
fact that

∏
(
∑n

j=1 aij) ≥ per(A) whenever aij ≥ 0. And if A is stochastic, then the left side
equals 1.

Second question: Littlewood-Offord problem. Input: a1, . . . , an, b ∈ R, and ∀ai 6= 0. We
choose a random subset I ⊆ [n], i.e. a random element from the power set. WTS P (

∑
i∈I ai =

b) ≤ c√
n
. Suppose all ai > 0 and I ⊂ J . Then

∑
i∈I <

∑
j∈J . Let A = {I |

∑
ai = b}, then

A is a Sperner Family so |A| =
(
n
bn
2
c

)
. So P (A) = |A|

2n
≤

( n
bn2 c

)
2n
∼
√

2
A
· 1√

n
< c√

n
.

Now suppose a1, . . . , an
2
> 0, and we don’t know/care about the rest. Then I = I1∪I2. Then

I1 ⊆ [ dne
2

] and I2 ⊆ { dne2 +1, . . . , n}. So we fix I2. Then we want PI(A | I∩{ dne2 +1, . . . , n} =
I2). (It is now not necessary that A is a Sperner Family.) Then we want to show that
(∀I2)(PI ≤ c′√

n
). (Intuition: we are taking the entire set of ai, . . . , an. We split it down the

middle, and then we take a random subset of the entire set. We then see where this random
subset is split. Then we ‘toss our coins’ for I2 while I1 is still open.) Then for fixed I2, the
I1s are a Sperner Family. So it’s the exact same approach as before, but with a different set
size — it follows that the new inequality bit is c√

n
2

=
√

2·c√
n

, so c′ = c ·
√
n.

The third problem was to prove that t ≤ cm3/2, where c =
√

2
3

. We use A, the adja-
cency matrix:

∑
λ2
i = tr(A2) = 2m and

∑
λ3
i = tr(A3) = 6t. (m is the number of edges, t

the number of triangles.) Note the λi, eigenvalues of A, are real because A is symmetric.

Nobody got the bonus problem: G graph, A adjacency matrix. We claim λ1 ≥ average
degree = 2m

n
.

For λ1, we have Rayleigh’s Quotient. (Computational details omitted— see earlier sec-
tion on the Rayleigh Quotient.) The numerator of the Rayleigh Quotient is the quadratic
form associated with A. Then if we take 1trA1 =

∑
i

∑
j aij = 2m. The norm of the all-ones

vector squared is ||1||2 =
∑n

i=1 12 = n.

Results that are too good to be true: some solutions to the first problem stated that
per(A) ≤ n!

nn
≤ 1. This is not sensible for various reasons.

With regard to the first bonus problem: when is λ1 = d? What is the condition for equality?
Take a digraph with adjacency matrix A. Because it is a digraph, the eigenvalues are not
necessarily real; λi ∈ C. DO ∀|λi| ≤ max outdegree.
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DO Undirected graph: λi = deg max iff there exists a connected component which is regular
of max. degree. (Example: two disconnected components, both regular — see their adja-
cency matrix.)

DO λ1 =average degree iff G is regular.

Undirected graphs. Recall λ1 ≥ λ2 ≥ . . . ≥ λn. Assume λ1 > 0. Let’s look at λn. We
know that

∑
λi = trA = 0.

DO (∀i)(|λi| ≤ λ1).

Is it possible for λn = −λ1?

If G is connected, then the average degree ≥ 2− 2
n
. (DO.)

The smallest possible degree of a graph (given by a tree) is just n − 1. As a lower bound,
that yields the above.

HW If G is bipartite, then λn = −λ1, and in fact λn−l = −λ1+l. So the entire spec-
trum is symmetric about 0.

DO If G is connected, and λn = −λ1, then G is bipartite. (Probably on the next test.)

Interlacing. If G is an undirected graph with eigenvalues λ1 ≥ . . . ≥ λn, and G1 : G
minus some vertex has eigenvalues µ1geq . . . ≥ µn−1 then λ1 ≥ µ1 ≥ λ2 ≥ µ2 . . . ≥ µn−1 ≥ λn.

DO (a) Look up Chebyshev Polynomials. What are their roots? (b) Relate characteris-
tic polynomial of a path to Chebyshev polynomial.
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25 Week 9: Wednesday, May 28

Alphabets, Shannon Capacity of a Graph, Orthonormal Representation of a Graph.

I arrived 10 minutes late.

Important information about choosing a grade for the class.

Five-spoked Umbrella. v1, . . . , v5, and vi ⊥ vi+2 mod 5. DO cos θ = 1
51/4

. Hint: spheri-
cal cosines theorem.

Now graphs and alphabets. Let Σ = set of vertices = alphabet. V (Gk) = σk, where
V (G · H) = V (G) × V (H). We write a ' b to indicate that two letters are “adjacent or
equal”. So letters can be confused. Words a1 . . . ak ' b1 . . . bk if (∀i)(ai ' bi). Question:
number of pairwise not confoundable messages?

DO Ks ·Kt = Kst.
DO α(G ·H) ≥ α(G) · α(H). In particular, α(Gk+l) ≥ α(Gk) · α(Gl).

Recall Fekete’s Lemma. So the limit limk→inf(α(Gk))1/k exists. We call this Θ(G), the
(zero-error) Shannon Capacity of G.

Obvious bounds: α(G) ≤ Θ(G) ≤ n = |V (G)|. Lower because lim = sup, and for k = 1 we
get α(G). Upper: because |V (Gk)| = nk.

Graph function: f : Graphs → Numbers. Domain is graphs, but isomorphic graphs give
the same numerical result, i.e. G1 ' G2 ⇒ f(G1) = f(G2).

Lemma. If f is graph function such that (∀g)(f(G) ≥ α(G)) and (∀G,H)(f(G · H) ≤
f(G) · f(H))) then (∀G)(Θ(G) ≤ f(G)).

Proof. α(Gk) ≤ f(Gk) ≤ f(G)k.
∴ α(Gk)1/k ≤ f(G).
∴ lim(Gk)1/k ≤ f(G).

HW Prove that Θ(G) ≤ χ(G). The above lemma will be helpful.

Corollary: if χ(G) = 2, implying a bipartite nonempty graph, then Θ(G) = 2. DO.

Corollary: if χ(G) = α(G) then both are equal to Θ(G). This includes all perfect graphs.

What is smallest graph that is not covered by this? Give some thought to it: it is the
pentagon (C5). The Shannon capacity of the pentagon was an open question for 30 years,
but proved by Lovász.
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α(C5) = 2.
α(C2

5) = 5 DO

Imagine each C5 as a line with five points on it, and their product as a five-by-five board on
a torus (the endpoints are connected). We draw an analogy from chess to find the largest
independent set: the king, on a point, can move to any adjacent vertex. So this is the King’s
graph on a toroidal five-by-five chessboard. The piece that most easily evades the King is
the knight — we don’t repeat points or move to points adjacent to where we have already
been. The king’s moves correspond to moving in F5 with slope 1/2. Drawing this out shows
that the independence set is of size at least 5.

This is just the affine lines in F5. Consequently α(C2
5) ≥ 5 — it is an exercise to show

that it is in fact equal. It follows that Θ(C5) ≥
√

5.

Also, χ(C5) = 3 ≥ Θ(C5). The fractional chromatic number of C5 is 5
2
. So

√
5 ≤

Θ(C5) ≤ 5
2
. Lovász Theorem: Θ(C5) =

√
5.

An Orthonormal Representation ONR of a graph: i ∈ V → vi ∈ Rd, ||vi|| = 1 s.t. if
i 6' j then vi ⊥ vj.
DO if ONR exists in Rd: d(G) = min such d.
Prove: Θ(G) ≤ d(G).

Back to the umbrella. v1, . . . , vn: ONR of G. c: any ||c|| = 1. Imagine the c as the
stem and the vi as the spokes.

ϑ(G) = min
v1,...,vn

max
i

1

(cTvi)2

The umbrella serves as the instance of this we need. C7 is still open.
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26 Week 9: Friday, May 30

Fractional Chromatic Numbers, Lovàsz’ Theta.

Shannon Capacity of a graph G. We defined a product V (G · H) = V (G) × V (H) and
(g1, h1) ' (g2, h2) if g1 ' g2 and h1 ' h2. And the Shannon Capacity, Θ(G) = limk→∞ α(Gk)1/k =
supα(Gk)1/k.

Lemma: if f : Graphs → R+, such that ∀G, f(G) ≥ α(G) and (∀G,H)f(G · H) ≤
f(G) · f(H), then (∀G)(Θ(G) ≤ f(G)).

The exercise was that χ(G) ≥ α(G). That χ(G) ≥ α(G) is obvious: χ(H) ≥ α(H) = ω(H).
Then we show submultiplicativity: if g : V (G) → {colors} and h : V (H̄) → {colors} then
(g, h) : (u,w)→ (g(v), h(w)) where v ∈ V (Ḡ) and w ∈ V (H̄). So suppose (v1, w1) ∼ (v2, w2)
in G · H. Then if (v1, w1) 6∼ (v2, w2) in G · H then either v1 6∼ v2 in G or w1 6∼ w2 in H.
v1 ∼ v2 in Ḡ, so g(v1) 6= g(v2).

Moshe Rosenfeld: linear programming upper bound: fractional chromatic number. Take
C1, . . . , Cm: independent sets in G. If a graph is k-colorable, then every color class is an
independent set, clearly. So: G is k-colorable iff ∃ ≤ k independent sets Ci, . . . , Cik such
that

⋃
Cij = V .

Assign x1, . . . , xm ∈ {0, 1} such that ∪xj=1Cj = V such that (∀i),
∑

j:i∈Cj xj ≥ 1 and∑
xj ≤ k.

So:

χ(G) = min{
m∑
j=1

xj | (∀i)(
∑
j:i∈Cj

xj ≥ 1}

This is an integer programming (IP) problem (a type of linear programming (LP)), where
the latter part of the minimization is the constraint, and the objective function is the former
part. We need one more constraint: 0 ≤ xj.

Integer Programming is a Linear Programming problem in which we are only looking for
integer solutions. IP is NP-Hard, whereas LP can be solved in polynomial time.

Linear relaxation: χ∗(G) = optimum over the reals. Clearly χ∗(G) ≤ χ(G).

This is still not feasible, because we have to list all the independent sets, but it is a useful
(theoretical) device for some graphs.

Example: χ∗(G) = 5
2
. This is optimum: let x12 = . . . = x51 = 1

2
.

“I am not talking about computation, I am talking about mathematics!” The joke about
the mathematician on the ground and the economist in the balloon was told.
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DO: prove that Θ(G) ≤ χ∗(Ḡ).

Now, back to Lovàsz’ Theta Function: (this was mentioned last class, though I don’t think
I mentioned it by name; it would be wise to look it up).

ϑ(G) = min
ONR of G(v1,...,vn)stem c

max
1≤i≤n

1

(cTvi)2

Where an ONR of G is v1, . . . , vn s.t. ||vi|| = 1 and if i 6∼ j then vi ⊥ vj. Stem: ||c|| = 1.

DO: in Lovàsz’ Theta, inf = min.

Theorem: Θ(G) ≤ ϑ(G). This is the case for all G.

Proof:
(1) ϑ(G) ≥ α(G). Suppose A ⊆ V , A independent. Then {vi | i ∈ A} is orthonormal.

Fact: if b1, . . . , vn is an orthonormal basis of Rn, then (∀c)(||c||2 =
∑

(c · bi)2. (This is
from the Pythagorean theorem in n dimensions.)

If we just have an orthonormal set of vectors, then we can extend it to an orthonormal
basis. So ||c||2 ≥

∑α
i=1(cvi)

2 ≥ α ·min{(cvi)2}. Then α ≤ 1
min(cvi)2

= max 1
(cvi)2

.

DO ϑ(G ·H) ≤ ϑ(G)ϑ(H).
Challenge+: A more difficult theorem: ϑ(G ·H) = ϑ(G) · ϑ(H).

It is a helpful fact that Θ(G) ≤ d(G) = min dim of ONR.
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27 Week 10: Monday, June 2

k-matchings, Orthogonal Polynomials, Chebyshev Polynomials.

k-matching: a set of k independent edges. Let mk(G) be the number of k-matchings in
G. This quantity is unimodal for all curve, and under rather general conditions it gives a
bell curve (satisfies the central limit theorem).

Generating Functions: For a sequence a0, a1, a2, . . ., its generating function is
∑∞

k=0 akx
k.

Example:
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
has the generating function (1 + x)n.

The matching polynomial of G is µG(x) =
∑bn/2c

k=0 (−1)k ·mk · xn−2k.

Suppose we have two polynomials. How are their roots related? Let

f(x) = a0 + a1x+ . . .+ anx
n

then if we reverse the coefficients:

h(x) = an + an−1x+ . . .+ a0x
n = xnf

(
1

x

)
and if we alternate signs:

`(x) = a0 − a1x+ a2x
2 − . . . = f(−x)

This theory came from a 1970s paper by Heilmann & Lieb, who were Statistical Physi-
cists.

IfG s cycle-free (forest), then µG(x) = fG(x) = characteristic polynomial ofG = det(xI−AG)
where AG is the adjacency matrix of G. (DO — not difficult if you understand the deter-
minant).

Theory of Orthogonal Polynomials. Suppose we have a density function ρ ≥ 0 on R that
satisfies (∀k)

∫∞
−∞ x

2kp(x)dx <∞. This defines for us an inner product on polynomials: if we

have f, g ∈ R[x], then 〈f, g〉 =
∫∞
−∞ f(x)g(x)ρ(x)dx. Then we have a notion of orthogonality:

two polynomials are orthogonal if their inner product is 0.

Then we take a basis of the space of polynomials: 1, x, x2, x3, . . . and we apply Gram-Schmidt
Orthogonalization to give f0, f1, f2, . . . with deg(fj) = j.

Some of the more remarkable polynomials in this family:

• Chebyshev Polynomial: there are two kinds, Tn(x) and Un(x). They are orthogonal
polynomials with respect to one of these two weight functions:

√
1− x2 and 1√

1−x2 , both
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of which are equivalent. They are everywhere in mathematics, even in combinatorics.
cos(nθ) = Tn(cos θ), where we remark that cos(nθ) is always a polynomial of cosine:
cos(2θ) = 2(cos θ)2 − 1. We note that n turns out to be the degree. Relevant to
approximation theory.

Another interesting weight function is e−x
2/2. This yields the Gaussian (“Bell”) curve. Then,

if we let p(x) = e−x
2/2, then we can define Hn(x), the Hermite polynomials, which are also

very interesting.

So to characterize orthogonal polynomials, we only need to define the density function.

Theorem. If f0, f1, . . . is a sequence of orthogonal polynomials, then (1) all roots of each fj
are real. (2) The roots interlace, i.e. between every two roots of fn, there is a root of fn−1.

Interlacing is already familiar: if fG is the characteristic polynomial of a graph, then the
roots of fG and fG/V interlace. (Where G/V denotes G minus any vertex.) It was a previ-
ous exercise to derive this from Courant-Fischer via the Interlacing theorem for symmetric
matrices. (Reference is made to the Rayleigh quotient — see previous section.)

Reminder: Pn is the path on n− 1 vertices.

µPn(x) = 2Tn(x) (Here, the Characteristic and Chebyshev polynomials are the same, be-
cause a path is a tree.)
µCn(x) = Un(x)
µKn(x) = Hn(x)

There are even more examples of classical orthogonal polynomials that show up as the
matching polynomials of specific families of graphs (e.g. the Laguerre polynomial for com-
plete bipartite graphs).

Theorem. (H-L) The roots of µG(x) are real for every graph G, and they interlace with
µG/V (x).

∴ all roots of µ′G =
∑
mk · xk are negative reals. It follows that the sequence of coef-

ficients is log-concave and unimodal. This is an extremely strong and amazingly general
conclusion.

If we let X be a random variable and all of its values are ≥ 0, independently, then fX(t) =∑∞
k=0 P (X = k) · tk. DO: If X, Y independent, then fX+Y = fX · fY .
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28 Week 10: Friday, June 6

Review of the final exam.

Reviewing the test (last class). See course homepage for copy of the test problems.

First problem: we want to find exponentially many independent sets. The idea is that we
take some complete graph, and t copies of that. We note that there are tn/t ways to pick a
vertex from each of these. We end up having that t = 3, so we just assemble disjoint triangles.

Second Problem: Eventown Theorem. We take incidence vectors ci → vi. If we have
|Ci ∩ Cj| even, then the dot product of vi · vj must be even. But we are working in Fn2 , so
the dot product must always be 0. So vectors are pairwise perpendicular. Then we can look
at the span: span(v1, . . . , vm) = U , so U ⊥ U , a totally isotropic subspace.

Now, if U ≤ Fnq , and dimU = k, then |U | = qk, so as dimU = k, we have |U | = 2k.
And we know that a totally isotropic subspace can never have dimension ≥ n

2
. We have that

U ⊥ U , so U⊥ ⊇ U . We recall that dimU = dimU⊥ = n, so k ≤ n− k, so k ≤ n
2
, and we’re

done.

(See previous notes for the proof that dimU + dimU⊥ = n — as usual, we construct a
system of homogeneous linear equations and the rank-nullity theorem.)

Third problem: if G 6⊃ C4 → m ≤ Cn3/2. (This was a previous homework.) I.e. ∃c >
0(∀n)(∃G 6⊃ C4,m > cn3/2). So if n = 2(q2 + q + 1) ∼ 2q2, we take the incidence graph
of a projective plane of order q: points and lines. This yields that the number of edges is

(q + 1)(q2 + q + 1) ∼ q3 ∼
(
n
2

)3/2
.

Bonus problem: prove Chernoff’s bound. We proved it in class.

Next problem: applying the Chernoff bound to rolling dice. First of all, Z is a sum
= Z1 + . . .+ Zn where

Zi =

{
1 if ith die shows a six

0 otherwise

Clearly these are independent, but their expected value is 1/6. So we introduce Z ′i = Zi− 1
6
.

Then |Z ′i ≤ 5
6
, and E(Z ′i) = 0. And Z ′ =

∑
Z ′i = Z − n

6
. We can apply Chernoff’s bound

directly to this, yielding that c = 1
2
. We can use a trick and declare Z ′′i = 6

5
Z ′i, and then

c = 18
25

, which is the best result we can get.

Next question: Shannon Capacity. Defining Shannon Capacity is clear (see previous sec-
tion if necessary).

If G ' G, then Θ(G) ≥
√
n. The first observation is that (∀G)α(G · G) ≥ n. Proof:

{(v, v)|v ∈ V (G)} is independent in G · G. (Follows from definition of adjacency.) So then
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if G ' G, a(G2) = α(G · G) ≥ n. We know that Θ(G) ≥ (α(G2))1/2. Then we use Fekete’s
Lemma to yield that α(G2)1/2 = n.

The generalization may be of interest: Theorem (Lovász): if G is self-complementary and
vertex-transitive then θ(G) =

√
n, and C5 is the first member of this class of graphs. (This

is a CH***).

Babai mentions a question that he believes is open, and not inaccessible: (∃k)(∀`)(∃G) :
Theta(G) ≤ k, χ(G) ≥ `. Is this true?

Next question: fractional chromatic number. We have a graph G and C1, . . . , Cm: inde-
pendent sets. With each one we associate a variable x1, . . . , xm, where 0 ≤ xi ≤ 1. For every
vertex j ∈ [n], and declare sj =

∑
j∈Ci xi ≥ 1. These are the constraints.

Then χ∗(G) = min
constraints

∑
xi.

First: χ∗ ≤ χ, followign from the above. (The chromatic number is an instance of the
fractional chromatic number.)

Next: our favorite inequality: χ∗ ·α ≥ n. Clearly
∑n

j=1 sj ≥ n, but C =
∑
xi|Ci| =

∑n
j=1 sj.

But
∑
xi |Ci|︸︷︷︸
≤α

≤

∑xi︸ ︷︷ ︸
χ∗

α.

Next: Littlewood-Offord problem, we discussed in class.

Have a good summer and look up Lovàsz’ paper on Shannon Capacity.
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